品牌
生产厂家厂商性质
淮安市所在地
大管径横截面流量计的概述:
大管径横截面流量计是一个标准的Z横截面,示出了截面的质心和剪切中心以及计算的横截面特性: 横截面和用户自定义截面网格划分将存储在横截面库文件中。可以用LATT命令将梁横截面属性赋给线实体。
一、 随着电厂自动化控制水平的进步,燃煤锅炉的负荷、煤粉量及配风量需要实现在线监测和自动协调控制,使锅炉一、二次配风合理,各风管内风速均匀,就可以保证锅炉燃烧稳定,提高锅炉效率,和经对于生产过程的技术分析济核算等是十分必要的。 但是,迄今为止,存在风速的测量与标定都比较困难,测量的准确度比较底(达不到压力和温度的测量水平),流量计的通用性差等问题。引起这些问题的原因,主要有以下三个原因: 1、流体性质的多样性:压力与温度参数的高低;流体中含尘量的多少;流体粘度的差别;单相流体与多相流体的区别,等等。这些物性会影响流体状态,在流量测量中必须加以考虑,但又很难精确。 2、管路系统的多样性:管道的直与弯的区别;圆截面与非圆截面的区别;直管段长短不一样,等等。都会影响流动状态,使流量测量复杂化。 3、流动状态的多样性:由于以上流体的物性和采用管道的不同,会影响到流体的流动状态,诸如旋转流和脉动流;层流、紊流;流动是否达到充分发展,等等。 以上三种影响流量测量的因数,要求我们必须针对被测对象的实际情况选择合适的流量计。 *,由于火力发电厂锅炉二次风管道的直管段极短,或者几乎没有;而且二次风的管道在极有限的距离内,分布有T形管道、L形管道、调节风门、变径管等,使管道内二次风的流动状态变化莫测,这就使得二次风的测量成为非常困难的事情。在许多场合就不测量了。 在必须测量的场合,不得不采用机翼型测量装置,但这只是一个无奈之举。因为机翼型测量装置的主要缺点,就是要大大减少二次风的流通面积,一般要减少50%-60%左右。为了在减少一半以上流通面积的情况下,仍然要保持应有的风量,以维持正常的发电复核的要求,就必须提高风机的功率,增大能源消耗;即使如此,因机翼型结构仍比较长,在一些场合,仍然不能使用机翼型测量装置;即使已安装了机翼型测量装置,因为前后直管道不满足,无法保证测量精度。一般在使用机翼型测量装置时,都要进行现场标定,但如果没有直管段,标定也不会准的。因此,采用机翼型测量装置测量二次风很难保证准确而稳定的测量。其他的装置,比如皮托管、匀速管,更不可能实现对二次风的测量。还有一类测速装置,比如叶轮的、涡街的、热式的流量计,虽然没有压力损失,但其对测量管道的直管段也一定的要求,否则也无法保证有准确的测量。 HJM横截面式流量计是*可以*的实现对二次风测量的流量计。它有四方面的优点: 1.它可以满足任何一个二次风管道的安装要求,只要有250-300mm长的安装位置,就可以安装。 2. 不需要进行现场标定(该流量计不需要流量系数,而且工业现场的标定也是基于横截面式流量计的原理),就能够保证足够高的测量准确性; 3.不受不规则流体、甚至是多向旋转气流的影响; 4.压力损失很小。 二、工作原理 由于没有足够的直管段,通过管道横截面上各点的流速不一样,很难找到一个能代表平均流速的一个点。如果管道内的流速是稳定、确切的形式,则在管道中流速分布是自管壁等于零连续变化到管道中心的zui大流速。因此在中间的变化过程中总可以找出一个点,在这个点上所测的流速即是平均流速。以上的叙述是在有充足直管道中气流与分布一定规律的前提下。这在实际工作现场是很难做到的,特别是二次风,极无规律。在这种情况下,如果利用测点速的装置(S型皮托管),测某一直线的线速度(匀速管、阿纽巴、威力巴)来推算出该截面的平均速度,简直无准确精度可言。 由于管道中的流速不等于常数,实际风速分布也没有一定的规律可遵循,但可以将测量流速的截面分割为许多小的单元面积A。假设每个单元面积内的流速为V,则总的流量就等于流过多个所有小单元面积的流量之和。即: 此方法称之为速度面积法。标准化组织已肯定了这种方法,并制定了相应的测量规范。当单元面积分割的越多,所测的流量应越准确。横截面式流量计,就是基于这个原理而设计出来的,并在实际应用中得到了证实。 单元面积划分的原则 1、矩形管道:将矩形管道的长边和短边分别按等长度的原则,将矩形管道的横截面平均分成若干个面积相同的小单元。测量每个小单元中心点的流速,在将所有小单元的流速之和平均,即是整个大横截的平均流速。 2、圆形管道:将圆形管道截面分割成若干个面积相等的同心圆环(*为圆),测出每个圆环的流速,然后再将所有圆环(包括*圆)的流速平均化,即得到该圆截面的平均流速。 三、优势 横截面式流量计有两个zui突出的优势,也是其它所有流量计不能与之相比的。 优势之一:无需任何直管段。只要有250—300mm的安装位置,就能保证准确的测量。