电介质充放电测试系统  可外接高压放大器
电介质充放电测试系统  可外接高压放大器

Huace-DCS10KV电介质充放电测试系统 可外接高压放大器

参考价: 订货量:
6843 1

具体成交价以合同协议为准
2024-11-22 15:41:48
261
属性:
产地:国产;调制方式:其他;加工定制:是;
>
产品属性
产地
国产
调制方式
其他
加工定制
关闭
北京华测试验仪器有限公司

北京华测试验仪器有限公司

免费会员
收藏

组合推荐相似产品

产品简介

华测Huace-DCS10KV储能电介质充放电系统采用电容放电电路来测量,测试电路如下图所示。在该电路中,首先将介电膜充电到给定电压,之后通过闭合高速MOS高压开关,存储在电容器膜中的能量被放电到电阻器负载的原理设计开发,更符合电介质充放电原理,电介质充放电测试系统 可外接高压放大器

详细介绍

电介质充放电测试系统  


一、电介质充放电测试系统技术概论:  

Huace-DCS10KV电介质充放电测试系统主要用于研究介电储能材料高电压放电性能。目前常规的方法是通过电滞回线计算高压下电介质的能量密度,测试时,样品的电荷是放回到高压源上,而不是释放到负载上,通过电滞回线测得的储能密度一般会大于样品实际释放的能量密度,无法正确评估电介质材料的正常放电性能。华测Huace-DCS10KV储能电介质充放电系统采用**设计的电容放电电路来测量,测试电路如下图所示。在该电路中,首先将介电膜充电到给定电压,之后通过闭合高速MOS高压开关,存储在电容器膜中的能量被放电到电阻器负载的原理设计开发,更符合电介质充放电原理。  


二、电介质充放电测试系统产品介绍:  



      在实 际应用中,当电介质或电容器充电后,存储的能量被放电到外部负载,放电过程由负载、电工互连和电容器组成的整个电  路决定,有时甚至电缆的长度变化也会强烈的影响放电过程、电压和电流波形。因此P-E回滞测量的放电条件与实际实用中的放电条件明显不同,并且在实际应用中从P-E回滞环获得的能量密度可能偏离(通常高于)真实的放电能量密度。为了评估介电材料在类似于现实应用的放电条件下的性能,另一种测试方式用于测量介电材料的储能特性。在测量过程中,首先将介电材料充电到给定的电压,然后,将电容器中的存储的能量放电到外部负载,如下图(1),经测试的介电材料可以建模为理想的无损耗电容,与电阻{等效串联电阻(ESR)}串联,代表介质材料的损耗。很容易看出,当外部负载电阻RL》ESR时,大部分储存的能量将通过ESR(电介质材料tanδ 、电极和连接电缆的电阻等)消散,并且来自RL测量的能量密度将远远小于存储的能量密度(快速放电)。因此,如果RL》ESR,介质电容器的放电效率将取决于负载条件,并且可以非常高。RL的选 取影响着测试的放电速度。较大的RL意味着较大的RLC常数(C是材料的电容)较慢的放电速度。在测试中,尽管可以固定RL,但是介电材料的电容是可能不是恒定的,因为材料介电性能具有场致依赖性。无论怎样,总是可以使用负载电阻和弱场电容来估算放电速度,并选择负载电阻进行测试。


电介质充放电测试系统  可外接高压放大器  

 



储能电介电放电行为  
1. 典型的测试电路  
华测Huace-DCS10KV储能电介质充放电系统采用**设计的电容放电电路来测量,测试电路如下图所示。在该电路中,首先将  
介电膜充电到给定电压,之后通过闭合高速MOS高压开关,存储在电容器膜中的能量被放电到电阻器负载。在放电过程中电压  
对样品的时间依赖性可以通过检波器进行记录。介电材料的储能性能通常取决于放电速度,可通过改变负载电阻器的电阻来  
调节。通常测试系统中装了具有不同电阻的电阻器。在测试过程中,用户需要选择电阻器或几个电阻器的组合获得得所需的  
电阻,并将电阻器或电阻的组合连接到测试的电介质材料。在该电路中,选择高压MOSFET开关以释放储存的能量非常重要。  
该开关限制电路的*大放电速度和*大充电电压。本套测试系统由放电采集电路、高压放大器或高压直流电源和控制计算机  
构成。在测试中,测试人员需要通过选择合适的电阻来确定测量的放电速度,测试样品上的电压可以由计算机自动获得。  

 


电介质充放电测试系统主要技术参数:  


1、电流探头带宽:120MHz;  
2、峰值电流:0-100A,150 A(多种电流可监测);  
3、电流采集精度:1mA;  
4、高压源模块:3KV,5KV, 10kV,15KV多可选(电流:0-5mA);  
5、开关适用:100万次,耐压15kV;  
6、温控范围:0-200℃;  
7、温度稳定性和精度:0.1℃;  
8、测试样品:薄膜,厚膜,陶瓷,玻璃等;  
9、可以配合各种极化设备进行多种压电材料和介电材料的测试。  

 



电介质充放电测试系统产品特点:  


1、 本系统采用特殊高压开关,通过单刀双掷控制充电和放电过程,开关可以承受10kV高压,寄生电容小,动作时间短;  
2、 电压10kV,电流5mA;  
3、 可外接高压放大器或高压直流电源;  
4、 通过电流探头检测放电电流,可达100A;  
5、 可以实现欠阻尼和过阻尼两种测试模式,欠阻尼测试时,放电回路短路,不使用电阻负载,过阻尼测试时,使用较大的高精  度无感电阻作为放电负载;
6、 可以作为一个信号源,产生任意波形;  
7、 通过示波器采集数据,并能直接计算储能密度;  
8、 定制载样平台,可适用于陶瓷和薄膜样品测试;  
9、 可以进行变温测试,RT~200℃;  
10、 可以进行疲劳测试;  
11、 还可用于极化材料之用。  

 

 

 




电介质充放电系统的测量-技术概述  
利用放电电路进行测试  
       与P-E回滞测量类似,在放电测试之前,应在介电材料的表面制备导电电极,还应测量可用于估计测试的放电速度的弱场介电特性。因为在测试中经常涉及几千伏的高电压,所以介电材料通常浸入硅油中。测试者应该确定他们感兴趣的放电速度。放电速度可以通过样品的低场电容C和负载电阻RL(RLC常数)粗略计算。一旦确定了期望的放电速度,就可以选择负载电阻器并将其连接到  测试样品,然后将充电电压施加到介电材料。一旦样品充电,然后通过按下电路盒上的放电按钮关闭高速开关,将储存的能量释放到负载电阻器,电阻器上电压的时间依赖性就可由计算机自动记录。
       在此将以P(VDF-TrFE-CFE)三元共聚物(63/37/7.5)作为示例材料,来演示如何解释放电结果。使用上图所示的电路,表征三元共聚物对负载电阻器的放电行为。使用时间相关的电压数据公式,可以计算放电能量密度的时间依赖性。图中显示了三元共聚物中不同充电电场的1MΩ负载的放电能量密度随时间的变化。总放电能量密度与从单极P-E回路推导出的能量密度相当。这里  
使用薄膜样品的电容在1kHz下测量为约1nF。对几种三元共聚物膜样品进行表征发现,由于极化响应的非线性和频率依赖性,三元共聚物的放电特性不能简单地通过RC常数来描述,其中R是电阻(R=RL+ESR)假设电容器电容不随频率、电场和RC电路的时间常数(τ=RLC+ESRXC)变化,如果RL>ESR,可以忽略ESRXC,,则放电能量密度与时间的关系如下:Uc(1)=UD(1-e-(21/t))式中,UD为放电能量。  
       为了便于比较,使用1nF的电容和1MΩ的负载电阻,利用公式来估算能量放电时间。70%能量释放所需理论放电时间为0.6ms,50%能量释放所需理论放电时间为0.35ms。而实验中,这两种能量释放所需放电时间分别为0.66ms和0.3ms。估计值和测量值之间的差异反映了非线性[有效介电常数在高场(>100MV/m)变小]和介电响应的频率依赖性(介电常数在更高频率或更短放电时间下变得更小)。此外,ESR在高频(或短放电时间)下很小,并且在放电后时间变长。对于相同的三元共聚物薄膜电容器,其他负载电阻((RLL分别为100kΩ和1kΩ)下放电能量密度如图所示。正如预期的那样,减小的RL会缩短放电时间。然而,仔细检查实验数据发现,放电时间的减少与RL的减少不成比例。  

 


电介质充放电测试系统  可外接高压放大器电介质充放电测试系统  可外接高压放大器  


3 年保修  
      华测仪器**的产品可靠性和广泛的 3 年保修服务**结合,帮助您实现业务目标、 增强测量信心、降低拥有成本、增强操作方便性。  

 





电介质充放电测试系统  可外接高压放大器  






电介质充放电测试系统  可外接高压放大器

电介质充放电测试系统  可外接高压放大器



上一篇:ADL直流电源、单极脉冲发生器和双极脉冲发生器产品介绍 下一篇:低压大电流直流电源适用于多种行业和领域的电源需求
热线电话 在线询价
提示

仪表网采购电话