其他品牌 品牌
生产厂家厂商性质
无锡市所在地
ZG30Cr20Ni10料筐铸造厂-金属铸造
面议ZG30Cr24Ni7SiN工业炉传动件铸造-金属铸造
面议ZG35Cr24Ni7Si2N水泥窑预热器内筒铸造厂-金属铸造
面议ZG40Cr25Ni20链条铸造厂-金属铸造
面议ZG40Cr25Ni20篦子板铸造厂-金属铸造
面议ZG30Cr18Mn12Si2N托板铸造厂-金属铸造
面议ZG40Cr25Ni20Si2搅拌风扇铸造厂-金属铸造
面议ZG40Cr25Ni20各类炉辊铸造厂-金属铸造
面议ZG40Cr30Ni20列接管铸造-金属铸造
面议ZGCr28Ni48W5Si2网带铸造-金属铸造
面议ZG35Cr28Ni16耐磨钢铸造厂-金属铸造
面议ZGCr28Ni48W5Si2玻璃辊铸造厂-金属铸造
面议ZG40Cr25Ni2高温滑块/ZG40Cr25Ni2铸钢件
铸件球化不良的表现在铸件断口上(一般多观察浇冒口断口),有大块黑斑或明显可见的小黑点;敲击铸件发出的声音不清脆;金相显微组织上有较多的厚片状石墨,有少量球状、团状石墨或枝晶石墨。 产生球化不良的具体原因,总的来讲由三大类因素所影响:残留镁量或稀土量过低(但稀土含量过高时,则石墨圆整度变差,铸件易产生白口及缩松);孕育作用不强或衰退;干扰元素过高。但在实际生产过程中,产生球化不良的因素很多,有技术、操作、管理方面的问题,下面分别来说明: 1、球化剂质量差 球化剂中Mg、RE含量经化验虽达到质量要求,但因熔炼技术不佳,含MgO较高(球化剂中含MgO>1%,对球化质量就可能有影响),MgO对提高球化质量几乎没有作用,反而使球墨铸铁易产生夹渣缺陷;球化剂里含Ca等元素少,球化处理时反应激烈,Mg烧损较多。
防止措施:不使用质量差的球化剂(要对供应商、生产厂家进行考察,先少量购进,试用后再批量购买)。球化剂放置时间过长,易受潮氧化。 2、炉前球化处理操作不当 球化剂倒入铁液包堤坝挖坑里后,未摊平拍实;表面覆盖物少,或覆盖层薄,或未填满球化剂块缝隙,冲入铁液后,不仅外露球化剂马上熔化反应,同时铁液大量进入球化剂块缝隙里,直接熔化球化剂或把球化剂冲起漂浮铁液表面,反应过早过快,Mg烧损较多。 防止措施:把倒入包底凹坑里的球化剂摊平、适当舂实,再把上面覆盖的孕育硅铁摊平并适当舂实,表面覆盖适当量的球墨铸铁屑(舂实)或一定厚度的球墨铸铁板。这样不仅把合金的缝隙填满,且有一定厚度覆盖层。 3、原铁液含硫量高 硫是主要反球化元素,含硫量高会严重影响球化质量,当原铁液中的wS>0.06%时,即便是加入较多的球化剂,也很难得到合格的球墨铸铁质量。
在球化处理过程中,球化剂中的Mg,首先与铁液中的S起化学反应,生成MgS的熔渣,剩余的Mg才起到球化作用,RE同样如此。由于球化元素少,所以影响了球化质量。铁液含硫量高,即便加入大量的球化剂,如果浇注时间过长,扒渣不净,还会发生“返硫”现象,影响浇注到后期的铸件质量。原铁液中硫的主要来源是:使用了含硫量高的焦炭或新生铁。 防止措施:使用含硫量低的生铁及回炉料和焦炭;掌握好球化剂加入量与原铁液含硫量的关系;炉前及球化处理过程中采取脱硫措施(往焦炭上喷洒石灰水、电炉脱硫较为容易、球化包内加入碱面或烧碱)。 随炉料代入的球化干扰元素过高,如Ti、Sb、As、Pb、Al、Sn等。稀土元素虽有一定的消弱或抵消反球化干扰元素的能力,但铁液中含干扰元素太多,仍会恶化石墨球形状(畸形石墨);即便球化,球墨铸铁材质的物理性能也会趋向很脆。
因此,在生产QT400—18以及抗低温球墨铸铁时,要选用高纯生铁。 4、接铁液浇包放置不当 出铁时铁液直接冲到压在凹坑里的球化剂上,不仅把覆盖物冲跑,而且使合金块直接受到高温铁液的冲击,或过早熔化激烈反应,或迅速漂浮至铁液表面,在铁液表面熔化烧损被空气吸收,减低了铁液对Mg的吸收率。 防止措施:放置好铁液包的位置,避免铁液直接冲击到合金上,让铁液平稳、快速的淹没合金并瞬时达到一定的深度,延长合金上浮的路程,便于合金充分被铁液吸收。 5、开始出铁液慢 如果开始出铁液过于缓慢,液面在包内上升的速度慢,当铁液淹没合金后,表层部分合金就开始熔化反应,并接着上浮,由于合金表面与铁液表面距离短,合金没来得及熔化就大量的漂浮于铁液表面,Mg在铁液表面熔化烧损被空气吸收而损耗掉,降低了铁液对Mg的吸收率。
防止措施:对于冲天炉来讲前炉缸内要存有充分的铁液,出铁前首先把堵塞出铁口周围的泥巴铲净,出铁时快速打开出铁口,让铁液很快达到铁液包容量深度的2/3(即一定深度),此时的球化反应,由于合金表面距离液面距离大,合金在铁液里上浮时,经过的路程长,合金边上浮、边熔化、边被铁液充分吸收,球化剂中的球化元素Mg的吸收率高,球墨铸铁质量好。电炉出铁更为方便,开始快速出炉,当反应剧烈时慢速出铁或停止出铁,在反应平稳时继续出铁至要求量,如果反应平稳,尽可能先快后慢(中间不停)的一次出完。 6、装加球化剂过早或堤坝凹坑内铁液未倒净 浇注后,红热的浇包底部,温度高于900℃。如果马上装球化剂,Mg、RE在高温的烘烤下损耗一部分(有冒烟现象);若堤坝凹坑内铁液未倒净,Mg的损耗更多;另外过热的预热温度也会促使球化剂的过早熔化。
防止措施:让浇包冷却降温一段时间,在出铁液之前装球化 剂,同时,浇注后及时把浇包内剩余的铁液倒干净,并把包内的熔渣扒干净。 7、球化铁液温度过低 球化铁液温度低于1390℃时,合金不易熔化,球化反应不*,球化级别难以达到要求。球化剂在上浮过程中,由于铁液温度低,不能迅速地把球化剂熔化吸收,致使球化剂上浮到铁液液面熔化燃烧。 8、球化铁液温度过高 球化铁液温度过高,覆盖剂以及球化剂熔化速度过快,由于纯Mg的密度为1.74g/㎝3,熔点651℃,沸点1105℃,即便是由于Mg与Si化合提高了合金的熔点,但也低于1400℃,更何况球化温度常在1490~1520℃,有的可能会更高一些。根据铸件的大小和铸件壁的厚薄,确实需要提高球化温度时,也要采取相对“低温处理高温浇注”的措施。
另外,铁液温度过高,铁液往往氧化严重,由于Mg和RE易与氧化物产生化合反应,高温使得Mg、RE的大量损耗和蒸发,降低了吸收率。 9、球化剂块度小、碎末多 当球化剂块度碎小、碎末多时,虽然球化处理方法一样,但由于合金块之间没有空隙,熔化反应只能是剥皮式地缓慢逐层进行,若按同样的步骤去浇注,可能会出现前几箱球化不良,后几箱球化尚好的现象。 防止措施:根据铁液包的大小即球化处理铁液的多少,而选择球化剂块度的大小。碎末过多时需要过筛处理;如果球化反应过慢,可用钢钎穿过铁液捣几下所装的合金,让铁液钻入合金里,以便加快球化反应。 10、球化剂块度过大 球化剂块度过大,在边上浮边熔化过程中,没有及时的被铁液吸收,而是漂浮到铁液表面熔化燃烧,散发到空气中而浪费掉。
球化剂块度的选择,是根据铁液包的大小即球化铁液的多少而确定的。 11、球化剂加入量少 球化剂加入量的多少与材质的要求、铁液的含硫量、铁液质量、球化处理温度、铸件大小等因素有关。球化剂加入量少有两个原因:一是设计要求加入量本身就少;二是出铁液量没有控制好,出的铁液量超过要求。 12、铁液氧化 铁液氧化后含氧量高,由于O和Mg的亲和能力很强,球化剂中的有效球化元素Mg,首先与O化合生产MgO熔渣,剩余的Mg才起到石墨的球化作用,由于氧损耗了大量的Mg,剩余的Mg不足于保证石墨呈球状的量,所以球化级别低,球化质量差。 防止措施:注意冲天炉低焦(炭)高度,防止铁液氧化;电炉熔化,不要使用过于氧化的炉料,防止铁液温度过高或高温长时间的保温,特别是10t大炉熔化铁液,每次球化处理1t,当球化处理后几包时,由于铁液在炉内的停留时间长,不但铁液缺少“晶核”,且易氧化。
在球化处理后几包时,先在炉内进行“预处理”,添加适量的碳化硅、脱氧剂、增碳剂、硅铁等进行脱氧处理,并适当多加一些球化剂。 13、包的深径比及包坑 (1)球化包的深度H与直接D的比例为:H/D=1.5~2。如果用球化包处理半包,则违背高经比的初衷。 (2)球化包的包坑深度,在装入球化剂和覆盖剂后应尚余20~30mm,铁液进入包坑与覆盖剂熔融成半固态物质,延缓球化剂过早爆发,可以提高Mg的收得率。 (3)包底凹坑的宽度,以包底直径的1/4~1/3为好,投影面积小的凹坑增加了深度,有利于延缓爆发。 (4)浇注完毕后及时清理包内的熔渣,使每包球化剂装入凹坑的情况相同。 14、因浇注时间过长等原因而产生的球化衰退 球化衰退的特征是:炉前球化良好,在铸件上球化不好;或者同一包铁液,先浇注的铸件球化良好,后浇注的铸件球化情况不好。
浇注时间过长产生的球化衰退往往还和孕育衰退并存。保证石墨呈球状化Mg残量的多少,决定了铁液的球化质量。Mg与O以及S的亲和能力很强,Mg与O结合生成MgO而燃烧掉。特别是S,当S与Mg结合生成MgS的熔渣后漂浮到液面,漂浮到液面后MgS熔渣中的Mg,又与空气中的O结合生成MgO而燃烧掉,而分离出的S又返回铁液,又与Mg结合,铁液中的S像小船一样,不停的把铁液中Mg带到空气中燃烧掉,这就叫做“返硫现象”。随着浇注时间的延长,铁液中Mg的残留量越来越少。有资料介绍,随着浇注时间的延长,每延长1min,铁液中Mg的烧损为0.004%。 解决措施:如果因故延长浇注时间,可以覆盖适当厚度的保温剂,减少铁液与空气接触,减少铁液中Mg的烧损量。
另外还应采取适当的随流孕育措施,把已经长大并呈畸形(长长后为片状石墨)的石墨分解或截断,使其形状趋于团球状。 15、孕育衰退 通过金相分析可以看到,孕育衰退的金相照片里,石墨球数量少,球径大,密度稀,球化级别低,通常铁素体含量少,珠光体含量增高,并且有碳化物的存在。孕育衰退产生的原因是:孕育剂加入量少,或孕育工艺不完善。由于镁的存在是球化的必要条件,而孕育中的元素,是参与石墨化的充分条件,因此只讲球化处理而不重视孕育处理,是做不成高质量的球墨铸铁的。防止措施:提高孕育剂的加入量;使用含钡、钙的*孕育剂;采取二次孕育、浮硅孕育、随流孕育的复合孕育措施。 16、球化包或浇注包潮湿 球化处理冲入铁液时,水经气化分解产生出氢气和氧气,O会中和掉球化剂中的部分Mg,变成了MgO熔渣,不仅降低了铁液中的含镁量,还容易使铸件产生渣孔及气孔缺陷。
树脂砂铸件质量好,废品率低,但若在原辅材料选用、工艺设计、造型(芯)操作、生产管理等方面控制不当,铸件也会产生不少缺陷,甚至成批报废。气孔与针孔:树脂砂透气性很好,但比各种无机类铸型的发气量高,综合看来较易发生气体类缺陷。防止措施:树脂和固化剂加入量要附合标准(尽量降低加入量);使用浓度较低的挥发性涂料,点火干燥后,铸型中有残留醇分的危险;更具造型后硬化所需时间随气温、湿度、固化剂加入量、固化剂种类等因素合理科学操作;浇注时应掌握好速度,决不能中途断流,浇注开始后还应点火引气等;树脂砂的宏观透气性很好,但浇注时有机物发气速度较快,浇注系统要认真上好涂料,假如直浇道较深,以陶瓷管来代替。其原因:原砂粒度较粗,分布过于集中,造成砂粒间隙大,金属液容易渗入砂型中去,呈“铁夹砂”状态的机械粘砂;涂料层不良引起;型(芯)的紧实度不够,使型(芯)表面疏松,稳定性差,对机械粘砂的抵抗力差;新砂的比例高时,抗粘砂能力较再生砂差;影响砂型表面稳定性的其他因素,如使用了超过使用时间的型砂,砂温过高等,均降低了抵抗机械粘砂的能力。
裂纹:树脂砂型铸件的热裂倾向比水玻璃砂和粘土砂型的铸件大,这可能是由于树脂砂型刚性好,热膨胀系数大,加上铸件冷却速度慢等因素造成的。防止措施:提高型(芯)退让性;造型(芯)时,背砂中埋入发泡聚苯乙烯块,尽量减薄型(芯)的吃砂量,做空心芯等;在易发生裂纹的部位用锆砂和铬铁矿砂代替硅砂,可明显减轻裂纹,这是因为这二种材料热膨胀系数低;改变浇注系统,使铸件达到同时凝固;在允许条件下,对铸件结构作合理修改;适当降低浇注温度,对减少裂纹有明显效果;在易发生裂纹处设置防裂筋;特殊情况下,以磷酸代替硫酸类固化剂;合理使用冷铁和其他激冷措施。主要是金属液与粘结剂反应生成的渣,以及因浇注时间长型(芯)顶被高温金属液烤坏产生的结疤。
防止措施:在设计浇注系统时,按照“快、稳、封闭、底注,保证压头,处理铁液”的原则,并在有条件的铸件顶面设置溢流冒口,将浇注中的冷、脏铁液导入溢流冒口中,并使其溢出;使用强度高、耐热性好、发气性低的涂料;大平面的平板铸件浇注时采用倾斜浇注,并在浇口杯对面设置适当数量的溢流冒口,可有效地防止大平面上出现夹渣缺陷。硬度不足:树脂砂铸型导热性差,金属液冷却凝固速度慢,会导致锛件硬度偏低。防止措施:适当降低铁液的CE值,以防止铁素体的产生;添加少量稳定珠光体元素;提高铸件冷却速度;适当降低浇注温度;适当提早开箱时间。铸铁尺寸精度超差:树脂砂铸型能提高铸件尺寸精度,但实际生产中因铸件尺寸超差而报废的情况还时有发生,原因有以下几种情况:模型或工装的变形。
无锡国劲合金有限公司是一家铸造离心铸造,沉没辊,炉底辊,耐热钢、耐磨钢、耐腐蚀、高镍、高铬合金钢,离心铸造、铸管、不锈钢铸造及机械加工为一体的企业。主要生产耐热钢、耐磨钢、耐腐蚀钢、不锈钢铸件、离心铸管、制氢管、辐射管(I型、U型、W型辐射管)燃气加热管、反应管、各类炉辊、玻璃辊、稳定辊、热镀锌沉没辊、热处理炉配件、凤叶、凤帽、料盘、料筐、滑块、蓖板、筛板、衬板、窑口护铁、窑尾护铁、垃圾炉炉排、不锈钢管件、法兰、标准件等
ZG40Cr25Ni2高温滑块/ZG40Cr25Ni2铸钢件