【
仪表网 仪表下游】从“汗水物流”到“智慧物流”,“无人”技术正在激活新动能。传输带上,包裹川流不息,经过机器快速扫码,按地址分送到不同“路口”,滑入收集袋里,再走向千家万户。从“汗水物流”到“智慧物流”,从手工作业到智能订制,“无人”技术正在加快推动传统产业智能化,为经济增长注入新动能。
我国科研团队自主研发的智能物流装备,目前已在国内几家主要快递企业得到广泛应用。图像高速识别技术是其中的关键。研发团队从初的人工智能处理图像入手,迭代创新技术,有效应对条形码污损、变形、模糊等问题,将识别准确率提升到99%以上。
智能物流是利用集成智能化技术,使物流系统能模仿人的智能,具有思维,感知,学习,推理判断和自行解决物流中某些问题的能力。智能物流的未来发展将会体现出四个特点:智能化,一体化和层次化,柔性化与社会化。在物流作业过程中的大量运筹与决策的智能化;以物流管理为核心,实现物流过程中运输,存储,包装,装卸等环节的一体化和智能物流系统的层次化;智能物流的发展会更加突出“以顾客为中心”的理念,根据消费者需求变化来灵活调节生产工艺;智能物流的发展将会促进区域经济的发展和世界资源优化配置,实现社会化。 通过智能物流系统的四个智能机理,即信息的智能获取技术,智能传递技术,智能处理技术,智能运用技术。
服务器的装配工作并不简单,全自动流水线往往用于同规格、同配置产品的大规模量产。然而,不同用户对服务器的配置需求迥异,提交到工厂的订单也五花八门。怎么提升效率?将先进计算等技术融入智能制造方案中,可以先将销售订单信息转成生产订单信息,然后排序、智能调度原材料到流水线的各个工站,再调度不同的机械臂开展协同生产。
主要技术
1.自动识别技术
自动识别技术是以计算机、光、机、电、通信等技术的发展为基础的一种高度自动化的数据采集技术。它通过应用一定的识别装置,自动地获取被识别物体的相关信息,并提供给后台的处理系统来完成相关后续处理的一种技术。它能够帮助人们快速而又准确地进行海量数据的自动采集和输入,在运输、仓储、配送等方面已得到广泛的应用。经过近30年的发展,自动识别技术已经发展成为由条码识别技术、智能卡识别技术、光字符识别技术、射频识别技术、生物识别技术等组成的综合技术,并正在向集成应用的方向发展。 条码识别技术是使用广泛的自动识别技术,它是利用光电扫描设备识读条码符号,从而实现信息自动录入。条码是由一组按特定规则排列的条、空及对应字符组成的表示一定信息的符号。不同的码制,条码符号的组成规则不同。较常使用的码制有: EAN/ UPC 条码、128 条码、ITF - 14 条码、交插二五条码、三九条码、库德巴条码等。 射频识别(
RFID)技术是现代自动识别技术,它是利用感应、无线电波或微波技术的读写器设备对射频标签进行非接触式识读,达到对数据自动采集的目的。它可以识别高速运动物体,也可以同时识读多个对象,具有抗恶劣环境、保密性强等特点。 生物识别技术是利用人类自身生理或行为特征进行身份认定的一种技术。生物特征包括手形、指纹、脸形、虹膜、视网膜、脉搏、耳廓等,行为特征包括签字、声音等。由于人体特征具有不可复制的特性,这一技术的安全性较传统意义上的身份验证机制有很大的提高。人们已经发展了虹膜识别技术、视网膜识别技术、面部识别技术、签名识别技术、声音识别技术、指纹识别技术等六种生物识别技术。
2.数据挖掘技术
数据仓库出现在20 世纪80 年代中期,它是一个面向主题的、集成的、非易失的、时变的数据集合,数据仓库的目标是把来源不同的、结构相异的数据经加工后在数据仓库中存储、提取和维护,它支持全面的、大量的复杂数据的分析处理和高层次的决策支持。数据仓库使用户拥有任意提取数据的自由,而不干扰业务数据库的正常运行。 数据挖掘是从大量的、不完全的、有噪声的、模糊的及随机的实际应用数据中, 挖掘出隐含的、未知的、对决策有潜在价值的知识和规则的过程。一般分为描述型数据挖掘和预测型数据挖掘两种。描述型数据挖掘包括数据总结、聚类及关联分析等,预测型数据挖掘包括分类、回归及时间序列分析等。其目的是通过对数据的统计、分析、综合、归纳和推理, 揭示事件间的相互关系,预测未来的发展趋势,为企业的决策者提供决策依据。
3.人工智能技术
人工智能就是探索研究用各种机器模拟人类智能的途径,使人类的智能得以物化与延伸的一门学科。它借鉴仿生学思想,用数学语言抽象描述知识,用以模仿生物体系和人类的智能机制,主要的方法有神经网络、进化计算和粒度计算三种。 神经网络:神经网络是在生物神经网络研究的基础上模拟人类的形象直觉思维,根据生物神经元和神经网络的特点,通过简化、归纳,提炼总结出来的一类并行处理网络。神经网络的主要功能主要有联想记忆、分类聚类和优化计算等。虽然神经网络具有结构复杂、可解释性差、训练时间长等缺点,但由于其对噪声数据的高承受能力和低错误率的优点,以及各种网络训练算法如网络剪枝算法和规则提取算法的不断提出与完善,使得神经网络在数据挖掘中的应用越来越为广大使用者所青睐。 进化计算:进化计算是模拟生物进化理论而发展起来的一种通用的问题求解的方法。因为它来源于自然界的生物进化,所以它具有自然界生物所共有的极强的适应性特点,这使得它能够解决那些难以用传统方法来解决的复杂问题。它采用了多点并行搜索的方式,通过选择、交叉和变异等进化操作,反复叠代,在个体的适应度值的指导下,使得每代进化的结果都优于上一代,如此逐代进化,直至产生全局优解或全局近优解。其中具代表性的就是遗传算法,它是基于自然界的生物遗传进化机理而演化出来的一种自适应优化算法。 粒度计算:早在1990 年,我国着名学者张钹和张铃就进行了关于粒度问题的讨论,并指出“人类智能的一个公认的特点,就是人们能从极不相同的粒度(granulari2ty) 上观察和分析同一问题。人们不仅能在不同粒度的世界上进行问题的求解,而且能够很快地从一个粒度世界跳到另一个粒度世界,往返自如,毫无困难。这种处理不同粒度世界的能力,正是人类问题求解的强有力的表现”.随后,Zadeh 讨论模糊信息粒度理论时,提出人类认知的三个主要概念,即粒度(包括将全体分解为部分) 、组织(包括从部分集成全体) 和因果(包括因果的关联) ,并进一步提出了粒度计算。他认为,粒度计算是一把大伞,它覆盖了所有有关粒度的理论、方法论、技术和工具的研究。主要有模糊集理论、粗糙集理论和商空间理论三种。
随处可见的Wi-Fi,通过统一数据标准,让手机、电脑轻松实现联网,但实现制造设备之间的实时互联,受工作环境及性能要求的限制,始终没有得到有效解决。一种名为WIA-FA的工业无线网络标准,将帮助互联网信息技术(IT)系统与工控系统操作技术(OT)系统深度融合,组成工业互联网,使智能工厂优化部署和控制,真正实现数据驱动。
但IT网络与OT网络的技术体系有明显差异,发展应用协议和数据互认面临诸多挑战。为此,中科院沈阳自动化所历时10余年,牵头制定了工业无线网络WIA系列国家标准,其中,WIA-FA协议一致性测试规范将解决不同生产厂家的WIA-FA无线网络设备互联互通问题,于2021年2月1日出版实施。
沈阳自动化研究所所长于海斌说,具有自主知识产权的WIA技术体系和WIA系列国家标准,将为智能制造提供解决方案,助力我国制造业的转型升级。
资料来源:新华网、百科
全部评论