液压泵诊断轴承常见的故障
在航空工业中,液压系统的工作性能直接影响着飞机的安全和旅客的生命,而液压泵是液压系统的动力源,因此对液压泵的状态监控与故障诊断尤为重要。轴承故障是液压泵常见的故障模式之一,由于轴承故障所引起的附加振动相对于 液压泵 的固有振动较弱,因而很难把故障信息从信号中分离开来。到目前为止,对液压泵轴承故障的故障诊断尚缺少十分有效的方法。本文提出在频域和倒频域进行特征提取,旨在解决轴承特征提取困难的问题并利用集成BP网络解决多故障诊断与识别和鲁棒性问题。
1、液压泵轴承故障的特征提取
对于机械系统而言,如有故障则一定会引起系统的附加振动。振动信号是动态信号,它包含的信息丰富,很适合进行故障诊断。但是如果附加振动信号由于固有信号或外界干扰对故障信号的干扰很大而淹没,那么如何从振动信号中提取有用信号就显得十分关键。
根据摩擦学理论,当轴承流动面的内环、外环滚道及滚柱上出现一处损伤,滚道的表面平滑受到破坏,每当滚子滚过损伤点,都会产生一次振动。假设轴承零件为刚体,不考虑接触变形的影响,滚子沿滚道为纯滚。
Hilbert变换用于信号分析中求时域信号的包络,以达到对功率谱进行平滑从而突出故障信息。定义信号:为*包络。倒谱包络模型实质是对从传感器获得的信号进行倒频谱分析,然后对其倒频谱信号进行包络提取,从而双重性地突出了故障信息,为信噪比小的故障特征的提取提供了依据。
2、集成BP网络进行故障诊断的原理
神经网络的组织结构是由求解问题的领域特征决定的。由于故障诊断系统的复杂性,将神经网络应用于障诊断系统的设计中,将是大规模神经网络的组织和学习问题。为了减少工作的复杂性,减少网络的学习时间,本文将故障诊断知识集合分解为几个逻辑上独立的子集合,每个子集合再分解为若干规则子集,然后根据规则子集来组织网络。每个规则子集是一个逻辑上独立的子网络的映射,规则子集间的,通过子网络的权系矩阵表示。各个子网络独立地运用BP学习算法分别进行学习训练。由于分解后的子网络比原来的网络规模小得多且问题局部化了,从而使训练时间大为减少。利用集成BP网络进行液压泵轴承故障诊断的信息处理能力源于神经元的非线性机理特性和BP算法。
3、神经网络鲁棒性的研究
神经网络的鲁棒性是指神经网络对故障的容错能力。*,人脑具有容错特性,大脑中个别神经元的损伤不会使它的总体性能发生严重的降级,这是因为大脑中每一概念并非只保存在一个神经元中,而是散布于许多神经元及其连接之中。大脑可以通过再次学习,使因一部分神经元的损伤而淡忘的知识重新表达在剩余的神经元中。由于神经网络是对生物神经元网络的模拟,所以神经网络的zui大特征是具有“联想记忆”功能,即神经网络可以由以往的知识组合,在部分信息丢失或部分信息不确定的条件下,用剩余的特征信息做出正确的诊断。
S-630X5 S-630X30 HDX-10X3 SFBX-800X5 FX-515X100 滤芯
S-400X30 S-800X30 HBX-400X1 SFBX-800X1 FX-510X100 滤芯
S-400X10 S-800X10 HDX-63X40 SFBX-800X3 S-100X5 滤芯
S-630X20 S-800X20 HDX-25X3 SFBX-630X30 STZX2-400X30 滤芯
S-100X1 S-25X20 HDX-25X1 SFBX-1000X1 STXX-25X1 滤芯
S-63X10 S-25X1 HDX-10X30 SFBX-800X30 STZX2-400X3 滤芯
S-63X20 S-40X5 HDX-10X10 SFBX-800X20 STZX2-400X20 滤芯
S-63X3 S-40X10 HDX-63X10 STZX2-40X20 STZX2-250X30 滤芯
S-63X1 S-40X1 HDX-250X5 STZX2-40X40 STZX2-400X1 滤芯
S-40X20 S-63X5 HDX-250X40 STZX2-40X3 STZX2-250X1 滤芯