面料透气性直接关乎到织物的舒适性问题,同时也关乎到消费者的健康问题,因此,纺织品面料透气性非常的重要,是保证织物面料的透气保温和舒适性的重要特点。为此,了解和研究面料透气性非常重要,本文重点说明一下面料透气性的影响因素。
纤维的温湿度条件:
实验表明,在织物结构(包括织物在纤维中所占的体积比例)相同的条件下,纤维种类对面料织物阻力几乎没有影响。霍利斯对经亲水处理过的涤纶织物和未经处理的涤纶织物进行的对比实验也表明,在低湿条件下,水蒸气的传递与织物内纤维种类关系不明显。
实际上在低湿条件下,由于纤维本身吸湿量较少,而且空气的扩散系数比纤维大很多水汽通过织物间的孔隙向水汽压较低的一侧扩散,说明水汽在织物中的传递与纤维种类关系不大。这时织物的厚度和孔隙率或织物结构是决定织物透湿的主要因素。
另一方面,纤维板的吸湿还同温度有关。在听湿过程中,纤维吸湿后要放也一定的热量,使纤维集合体的温度有所升高,纤维内部的水汽分压升高,减小了纤维内部同外部水分浓度的梯度,使纤维吸湿速度和扩散透湿速度减慢。纤维的扩散系数会随温度的升高而呈指数增大,在吸湿时这种增加更为明显,因此温,湿度的增加会使织物内纤维的传湿能力加强。从吸湿或放湿的速度来看,一般表现为开始较快,随吸湿或放湿的增加而逐渐减慢,终达到吸湿平衡。但过到平衡所需时间则与纤维自身的吸湿能力和纤维集合体的松紧程度有关。此外,吸湿后纤维的导热系数将增大。
纤维的种类与填充率:
在高湿或织物结构较紧密的情况下,水汽不再只是经过织物中的孔隙传递而是由纤维自身进行传递,此时纤维的种类成为影响织物传递的重要因素。一方面纤维自身吸湿产生溶胀,使织物更加紧密,织物的透气性减弱,依靠孔隙扩散传湿作用减小;另一方面与织物的截面积相比,纤维板的表面积是一个相当大数量级的量。纤维吸湿量较大时,水分通过纤维表面扩散即毛细管产生的芯吸作用得到了加强,成为织物传湿的主要方面,织物孔隙率减小引起扩散透湿减小成为次要矛盾。因此只要织物内纤维回潮率达到一定的程度,尽管孔隙减少使得织物内由空气介质的传湿量减少,但由于纤维自身的传湿有实质几天的增加,湿阻还是有可能减小。
因此,对结构较为松散、空隙率较高的织物,在空气相对湿度较低的情况下,无论其纤维是否吸湿,透湿以通过纤维间、纱线间缝隙的扩散为主;而在很小的程度上受纤维种类的影响,在空气相对湿度较高的情况下,对吸湿性好的纤维织成紧密织物,纤维吸湿膨胀后使纤维间缝隙减小,扩散透湿的比例减小,纤维内的毛细管透湿比例增大,毛细透湿成为主要因素。
织物厚度与覆盖系数:
织物厚度与其湿阻有近似的。一般织物厚度越厚,织物湿阻越大。这是因为织物厚度越厚,水汽通过织物间的孔隙所走路径越长。另外,实验表明,织物孔隙率的变化对织物湿阻的影响是明显的。
织物后整理:
涂层或浸渍等织物后整理会增加织物的湿阻。因为它增加了水汽通过织物的路径或堵塞了织物的空隙。然而,亲水整理会使织物的透湿性增加。拒水整理一般不影响织物的透湿性。
其他因素:
一般织物液态水传输速度大于液面蒸发速率,织物内侧有较小的缝隙孔洞使之易于凝结成液态水向外输运,形成差动毛细效应,外侧有较大缝隙孔洞使之易于满足蒸发条件,有利于散湿。织物表面液态水的蒸发能力与织物厚度、孔隙率等关系不太密切,但与织物表面凹凸形态,特别是表面凹坑的尺寸和深度有密切关系,在一般情况,凹坑开口面积越大,曲率半径越大,蒸发效率超高。凹坑的细节、风速、温差等也有明显的影响。
织物透气测试仪主要用于测定纺织、服装、面料、无纺布等多种材料的透气性能。
测试方法:
织物被压在选定好的测试头上,仪器产生持续的气流通过试样,并在试样两面产生一定的压差,极短时间内,系统自动计算出试样的透气率。
将预先处理好的试样放置在上下测试腔之间,夹紧,首先对低压腔(下腔)进行真空处理,然后对整个系统抽真空,当达到规定的真空度后,关闭测试下腔,向高压腔(上腔)充入一定压力的试验气体,并保证在试样两侧形成一个恒定的压差(可调),这样气体会在压差梯度的作用下,由高压侧向低压侧渗透,通过对低压侧内压强的监测处理,从而得出所测试样的各项阻隔性参数。
标准集团(香港)有限公司可长期专业提供织物透气测试仪,欢迎电询!