1. 分类
涡街流量计可按下述原则分类。 按传感器连接方式分为法兰型和夹装型。 按检测方式分为热敏式、应力式、电容式、应变式、超声式、振动体式、光电式和光纤式等。 按用途分为普通型、防爆型、高温型、耐腐型、低温型、插入式和汽车型等。 按传感器与转换器组成分为一体型和分离型。 按测量原理分为体积流量计、质量流量计。
2. 几种类型产品简介
各类涡街流量计性能比较如表3所示。 表3 不同检测方法涡街流量计比较 名 称 | 检测变化量 | 检测技术 | 口径/mm | 介质温度/oC | 范围度 | 雷诺数范围 | 简单程度 | 牢固程度 | 灵敏度 | 耐热性 | 耐振性 | 耐污能力 | 应用范围 | 检测原理 | 检测元件 | 热敏式涡街流量计 | 流 速 变 化 | 加热体冷却 | 热敏元件 | 25~200 | -196~+205 | 15~30 | 104~106 | △ | √ | √ | × | √ | × | 清洁、无腐蚀液体、气体 | 超声式涡街流量计 | 声束被调制 | * | 25~150 | -15~+175 | 30 | 3×103~106 | × | △ | √ | △ | √ | √ | 小口径液体、气体 | 电容式涡街流量计 | 压 力 变 化 | 压差作用 | 压差检测 | 膜片/电容 | 15~300 | -200~+400 | 30 | 104~106 | × | △ | √ | √ | △ | △ | 液体、气体、蒸汽 | 应力式涡街流量计 | 压差检测 | 膜片/压电片 | 50~200 | -18~+205 | 16 | 104~106 | × | △ | √ | √ | × | √ | 液体、气体、蒸汽 | 振动体式涡街流量计 | 压差检测 | 圆盘/电磁 | 50~200 | -268~-48 | 10~30 | 5×103~106 | √ | × | △ | √ | × | × | 极低温液态气体 | 棱球/电磁 | -40~+427 | 高温蒸汽 | 光电式涡街流量计 | 压差检测 | 反射镜/光电元件 | 40~80 | -10~+50 | 40 | 3×103~105 | √ | △ | √ | × | × | × | 低压常温气体 | 应变式涡街流量计 | 升力作用 | 应变检测 | 应变元件 | 50~150 | -40~120 | 15 | 104~3×106 | △ | √ | × | △ | △ | √ | 液体 | 应力式涡街流量计 | 应力检测 | 压电元件 | 15~300 | -40~+400 | 10~20 | 104~7×106 | √ | √ | √ | √ | × | √ | 液体、气体、蒸汽 | 注∶√-较好、△-一般、×-差。 以下简介几种类型VSF。
⑴ 应力式VSF
如图9所示,应力式VSF应用检测方式1)~4)(见二、2.),它把检测元件受到的升力以应力形式作用在压电晶体元件上,转换成交变的电荷信号,经 电荷放大、滤波、整形后得到旋涡频率信号。压电传感器响应快、信号强、工艺性好、制造成本低、与测量介质不接触、可靠性高。仪表的工作温度范围宽,现场适 应性强,可靠性较高,它是目前VSF的主要产品类型。 图9 应力式涡街流量计 1-表头组;2-三角柱;3-表体;4-联轴;5-压板;6-探头;7-密封垫;8-接头; 9-密封垫圈;10-螺栓;11-销;12-铭牌;13-圆螺母;14-支架;15-螺栓
但是,它对管道振动较敏感,是其主要缺点,几年来,生产厂家做了大量工作以弥补此缺陷:如对仪表本身结构,检测位置以及信号处理等采取措施;在管道安 装减震方式下功夫;向用户提供选点咨询指导等,已经取得一定的进展,当然如测量对象有较强的振动还是不用为好。
(2)电容式VSF
电容式VSF应用检测方式1)、2),安装在涡街流量传感器中的电容检测元件相当于一个悬臂梁(见图10)。当旋涡产生时,在两侧形成微小的压差,使 振动体绕支点产生微小变形,从而导致一个电容间隙减少(电容量增大),另一个电容间隙增大(电容量下降),通过差分电路检测电容差值。当管道有振动时,不 管振动是何方向,由振动产生的惯性力同时作用在振动体及电极上,使振动体与电极都在同方向上产生变形,由于设计时保证了振动体与电极的几何结构与尺寸相匹 配,使它们的变形量一致,差动信号为零。这就是电容检测元件耐振性能好的原因。虽然由于制造工艺的误差,不可能*消除振动的影响,但大大提高了耐振性 能。试验证明,其耐振性能超过1g。电容式另一个优点是可耐高温达400oC,温度对电容检测元件的影响有两方面:温度使电容间介电常数发生变化和电极的几何尺寸随温度而变,这些导致电容值发生变化,另一方面由于温度升高金属热电子发射造成电容的漏电流增大。试验证明,当温度升高至400oC时无论电容值变化或漏电流增大都未影响仪表的基本性能。
图10 电容式检测元件
⑶ 热敏式VSF
热敏式VSF采用检测方式2)、3),如图11所示。旋涡分离引起局部流速变化,改变热敏电阻阻值,恒流电路把桥路电阻变化转换为交变电压信号。这种 仪表检测灵敏度较高,下限流速低,对振动不敏感,可用于清洁、无腐蚀性流体测量。 图11 热敏式涡街流量计 R11,R12-热敏电阻
⑷ 超声式VSF
超声式VSF采用检测方式5),如图12所示。由图可见,在管壁上安装二对超声探头T1,R1,T2,R2,探头T1,T2发射高频、连续声信号,声波横穿流体传播。当旋涡通过声束时,每一对旋转方向相反的旋涡对声波产生一个周期的调制作用,受调制声波被接收探头R1,R2转换成电信号,经放大、检波、整形后得旋涡信号。仪表有较高检测灵敏度,下限流速较低,但温度对声调制有影响,流场变化及液体中含气泡对测量影响较大,故仪表适用于温度变化小的气体和含气量微小的液体流量测量。 图12 超声式涡街流量传感器
⑸ 振动体式VSF
振动体式VSF采用检测方式2),如图13所示。在旋涡发生体轴向开设圆柱形深孔,孔内放置软磁材料制作的轻质空心小球或圆盘(振动体),旋涡分离产 生的差压推动振动体上下运动,位于振动体上方的电磁传感器检测出旋涡频率。它只适用于清洁度较高的流体(如蒸汽),可用于*温(427oC)及极低温(-268oC),这是其特点。 图13 振动体式涡街流量计
⑹ 升力式涡街质量流量计
旋涡分离的同时,旋涡发生体受到流体作用的升力,升力F的大小为 F=CLρU2/2 (5) 式中 CL-旋涡发生体升力系数。 以式(5)除以式(1),经整理后可得质量流量qm qm=ρU(π/4)D2=πD2Sr/2CLmd×F/f (6) 由式(6)可看出,质量流量qm与升力F成正比。图14为原理框图。从压电检测元件取出旋涡信号,经电荷转换器后分两路处理:一路经有源滤波器、施密特整形器和f/V转换器,获得与流速成正比的信号;另一路经放大器、滤波器获得信号幅值与ρU2成正比的信号。这两路信号经除法器运算,获得质量流量。 图14 升力式涡街质量流量计原理框图
该方法结构简单,但信号幅值与压电元件稳定性、放大器稳定性、现场安装条件、被测介质温度等多种因素有关,测量度难以提高。
⑺ 差压式涡街质量流量计
流体通过旋涡发生体,产生旋涡分离和尾流震荡,部分能量被消耗和转换,在旋涡发生体前后产生压力损失 △p=CDρU2/2 (7) 式中 CD-涡街流量传感器阻力系数。 以式(7)除式(1),经整理后得质量流量qm qm=ρU(π/4)D2=(πD2Sr/2mdCD)(△p/f) (8) 图15示为差压式涡街质量流量计原理框图,传感器输出与体积流量成正比的频率,差压单元测出旋涡发生体前后特定位置的差压△P,经计算单元计算,获得质量流量qm。选择阻力特性和流量特性俱佳的旋涡发生体,确定取压孔位置,建立CD的数学模型是技术关键。 图15 差压式涡街质量流量计
|