泉州市雷击冲击电压发生器原理
泉州市雷击冲击电压发生器原理
泉州市雷击冲击电压发生器原理
泉州市雷击冲击电压发生器原理

HDCJ泉州市雷击冲击电压发生器原理

参考价: 面议

具体成交价以合同协议为准
2023-09-04 13:28:42
2993
属性:
产地:国产;加工定制:是;执行质量标准:国标;
>
产品属性
产地
国产
加工定制
执行质量标准
国标
关闭
武汉华顶电力设备有限公司

武汉华顶电力设备有限公司

初级会员7
收藏

组合推荐相似产品

产品简介

泉州市雷击冲击电压发生器原理 HDCJ雷击冲击电压发生器满足现行标准、国家标准及有关行业标准。本套装置所输出电压波形及效率:(负荷电容小于5500pF时包含分压器电容)下,可产生标准雷电冲击电压波形数量:3个。

详细介绍

HDCJ雷击冲击电压发生器满足现行标准、国家标准及有关行业标准。本套装置所输出电压波形及效率:(负荷电容小于5500pF时包含分压器电容)下,可产生标准雷电冲击电压波形数量:3个。
   A.标准雷电冲击全波电压波形
   波头时间:1.2±30%μs,波尾时间:50±20%μs,过冲:小于5%,效率:不低于90%。±1.2/50μs标准雷电冲击电压全波,效率大于90%。
   B.标准雷电冲击截波电压波形。
   波头时间:1.2±30%μs,过冲:小于5%,截断时间:2~6μs,电子时延控制,效率:不低于90%,采用截断装置可产生截断时间2~6μs的雷电截波,截波分散性小于100ns。
   C.变压器电抗器雷电冲击电压试验的示伤电流全波波形。

二.执行标准:
    GB311.1-1997高压输变电设备的绝缘配合
    GB/T16927.1-1997高电压试验技术,一般试验要求
    GB/T16927.2-1997高电压试验技术,测量系统
    GB/T16896.1-1997高电压冲击试验用数字记录仪
    ZB F24 001-90冲击电压测量实施细则
    GB191 包装运标志
    GB4208 外壳防护等级
    GB813-89 冲击试验用示波器及峰值表
三.使用条件:
    本冲击电压发生器试验系统装置主要适用于110kV及以下电力产品的雷电冲击电压全波,也可用于其它产品的冲击试验。
    1.海拔高度不超过1500m
    2.环境温度:-15~+50℃
    3.空气相对湿度:≤90%
    4.安装使用地点:户内使用,可移动
    5.必须设有一个屏蔽控制室及可靠接地点,接地电阻<1Ω!
    6.冲击发生器(型号:HDCJ-900/33.7)
       A.冲击发生器主要技术参数
       B.标称雷电波冲击电压:HDCJ-900kV
       C.标称容量(能量):33.75kJ
       D.级电容:0.6μF,100kV(100kV-0.6μF)干式全绝缘封装
       E.级电压:±150kV 
       F.级数/级容量:5 / 6.75kJ
       G.输出波形:±1.2/50μs标准雷电冲击电压全波,效率大于90%;
       H.同步范围:大于20%
       I.使用持续时间:
         小于80%额定工作电压时可连续工作
          大于80%额定工作电压时可间断工作
      J.幅值调节误压差小于1%,输出电不大于10%设备标称电压。
      K.同步误动率:小于1%
      L.底座:2m × 1.5m (脚轮移动)。
      高度:约3.5米。
      重量:约860kg。
7.冲击电压发生器的技术说明
      A.发生器的结构
      B.采用瑞士HAEFELY公司SGS系列的主回路设计,从而实现了整体超小型。
      C.采用每分钟一转的低速齿轮齿条传动机构调整各级球隙,不仅无噪声、磨损小,而且定位快速、准确。
      D.采用弹簧压接、方便拔插的调波电阻固定机构,保证了接触的可靠性,使输出波形光滑无毛刺。
      E.配合PLC电气控制系统的脉冲放大器可使同步球隙具有20%以上的触发范围,保证触发的可靠性,控制方便可靠。
      F.同步球隙的触发无极性效应,无须双边触发。
8.主电容器
    A.主电容器采用高密度固体电容器,每台电容量为0.6±0.05μF,直流工作电压为±100kV,电容器固有电感小于0.2μH,重量轻,体积小,
    B.电容器在正常工作状态和工作环境下凹凸变形小于1mm。
    C.电容器为固体绝缘介质和外壳干式全绝缘封装,不存在漏油、变形等问题。
9.调波元件
    A.波头、波尾电阻具有足够的热容量,可保证发生器长时间连续运行。
    B.充电电阻具有足够的热容量,可保证发生器长时间连续运行。
    C.波头、波尾电阻采用板形结构,使用康铜丝无感绕制而成,外部采用绝缘树脂真空浇铸,接头为弹簧压接式,易于安装。
    D.波头、波尾电阻的连接头采用3mm不锈钢线切割制造。
    E.共有1组半波头电阻、1组半波尾电阻用于雷电冲击,另有1组充电电阻和保护电阻。
10.控制、保护系统
   采用PLC电气控制系统为冲击电压发生器主体部分提供各种控制,*冲击试验的各种控制 
功能。PLC控制系统采用进口PLC器件,与设备主体的连接采用两芯光缆。
   A.PLC全自动控制系统实现手动控制。软件包可以与测量和波形分析用的峰值电压表、示波器等配合使用,实现冲击电压试验系统计算机测控一体化。
  B.控制系统具备以下控制功能:
   1.控制功能具有手动控制,各层次功能相对独立,确保系统的可靠性。
   2.采用可控硅调压方式,具有充电电压反馈测量系统。
   3.点火球隙可手动,并在控制面板上显示。
   4.采用函数控制恒流充电方式,充电电压的稳定度可达到0.5%。
   5.液晶面板可指示冲击发生器的充电电压,精度为1%。
   6. 具有充电异常保护功能,手动发出触发点火脉冲
   7.设备主体及充电部分接地和接地解除控制。
   8.手动控制充电电压的充电过程
   9.手动响警铃报警
   10.具有过电流和过电压自动保护
  C.同步球隙*级采用三电极球隙触发,触发范围大于20%。
  D.安全接地系统
  E.采用电磁铁自动接地机构通过一个接地电阻将发生器的*级电容接地。
  F.接地操作与充电控制具有连锁保护,确保操作安全正常。
11.主要配置的设备
  A.整流充电电源(与冲击本体一体化)
     型    号:HDLGR-100/100
     额定电压:Un = 100kV DC (正或负极性)
     额定电流:In = 100mA (额定电压下)
     电压控制:可控硅模块调压,调压范围0~ Un
     极性转换:手动变换高压硅堆的方向
     输入电压:220V 单相电压
     电源频率:50/60 Hz 
     电源消耗:约5kVA
  B.弱阻尼电容分压器
     型    号:HDCR-900kV/500pF
     额定电压:900kV
     额定电容:500pF
     电容节数:2节,每节电容:1000pF(375-1200脉冲电容器)
     方波响应:部分响应时间小于100ns,过冲小于10%
     分压比:约500,分压比不确定度:小于1%
  C.测量设备
     型    号:HDIMS-1000数字化冲击测量系统
      幅值测量:HZ(IPM)23型冲击峰值电压表
     输入范围:150V ~ 1600V(冲击电压)
     测量不确定度:小于1%
     波形测量:TDS1012C-SC数字示波器,采样率1.0GS/s,带宽大于100MHz,分辨率8bit,记录长度2.5k字节(可满足冲击试验要求),2通道
     波形分析:工业控制计算机工作站(采用15寸液晶显示屏)
     冲击测量软件包:冲击波形参数计算及显示,波形比较功能,波形的放大、缩小及平移,波形的存储及调用,波形的成图及报告编写
附    件:高性能100倍衰减器1支
隔离滤波屏蔽设
更多产品咨询请访问武汉华顶电力设备有限公司

理进行测试。接线图如图1a所示,将故障芯线与另一完好芯线组成测量回路,用电桥测量,一端用跨接线跨接,另一端接电源、电桥或检流计,调节电桥电阻使电桥平衡,当电缆芯线材质和截面相同时,可按下列公式计算 
  若损坏的线芯和良好的芯线在电桥上位置相互调换时,则有式中Z——测量端至故障点的距离m; L——电缆总长度,m; R1、R2——电桥的电阻臂。 
  在正常情况下,这两种接线测量结果应相同,误差一般为0.1%~0.2%,如果超出此范围或者X>L/2,可将测量仪表移到线路的另一端测量。 
  另外,我们还可以采用连续扫描脉冲示波器法HDDL电缆故障测试仪进行测试。短路或接地故障点处反射波将为负反射,荧屏图如图1b所示。此时故障点距离可按下列公式计算式中X——反射时间μs; V——波速,m/μs。 
  (2)测量时注意的事项。 
  a.跨接线的截面应与电缆芯线截面接近,跨接线应尽量短,并保持良好。 
  b.测量回路应尽可能绕开分支箱或变、配电所,越短越好。 
  c.直流电源电压应不低于1500V。 
  d.直流电源负极应经电桥接到电缆导体,正极接电缆内护层并接地。 
  e.操作人员应站在绝缘垫上,并将桥臂电阻、检流计、分流器等放在绝缘垫上。 
  1.1.2两相短路故障点的测试 
  当出现两相短路故障点,测量接线方法如图2所示。测量时可将任一故障芯线作接地线,另一故障芯线接电桥,计算公式和测量方法与单相低电阻接地故障点相同。 
  1.1.3三相短路故障点的测试 
  当发生三相短路故障时,测量时必须借用其他并行的线路或装设临时线路作回路,装设临时线路,必须精确测量该线路的电阻,接线方法如同图2所示。可按下式计算,即式中R为临时线的单线电阻值,其余符号的含义与式(2)相同。 泉州市雷击冲击电压发生器原理

1.2高电阻接地故障点 
  电缆的高电阻接地故障是指导体与铝护层或导体与导体之间的绝缘电阻值远低于正常值,但大于100kΩ,而芯线连续性良好。 
  1.2.1用高压电桥法寻找高阻接地故障 
  其接线原理如图3a所示,由于故障点电阻大,必需使用高压直流电源,以保证通过故障点的电流不致太小。桥臂电阻为100等分的3.5Ω左右的滑线电阻,电桥所加电压10~200kV,微安表指示为100~20μA,故障点至测量端的距离可按泉州市雷击冲击电压发生器原理下式测算,即当调换图3中故障芯线与完好芯线的位置时则有式中X——故障点至测量的距离,m; L——电缆线路长度,m;C——滑线电桥读数。 
  1.2.2一次扫描示波器(711型)法 

上一篇:HDZH-H型SF6综合测试仪使用方法说明 下一篇:HD6602石油运动粘度测试仪特点和试验注意事项
热线电话 在线询价
提示

请选择您要拨打的电话: