品牌
生产厂家厂商性质
武汉市所在地
:产品概述
避雷器用监测器已经普及我国各大小电厂电站,为避雷器的可靠运行提供了重要数据。由于密封性能的差异,监测器在运行的过程中可能进入水分和潮气,使内部器件锈蚀,或其他原因造成监测器计数器不能正常动作,泄漏电流指示不准确。所以《规程》规定应每年都对避雷器监测器进行检查。运行中的避雷器监测器显示异常数据时,工作人员则需要进行相应检测找出故障原因。其中当监测器显示电流数值比正常明显偏大时,一般为避雷器持续电流增大(包括阻性电流增大、外瓷套污秽电流增大等),或者是监测器测量部分出现故障;当监测器显示电流数值比正常明显偏小时,一般为绝缘底座漏电或者监测器本身故障所致。可见只要监测器数据异常,监测器本身就是大的怀疑对象。一般工作人员首先会对监测器进行检测,当确定监测器良好后才开始检测避雷器及查找其它问题。
目前,市场上监测器品种繁多,质量也良莠不齐,而且生产厂家大多不提供监测器的检测设备,而《规程》上提供的简易检测手段现场制作十分困难,使用操作不方便也不安全。所以如何判断监测器的好坏也就成了现场工作人员非常头痛的问题。针对上述现状,我公司根据多年的现场经验总结研发了集监测器电流校验、监测器动作测试和电流测量等多种功能于一体的多功能高精度测试仪器HDYZ-102避雷器监测器测试仪,仪器为一体化结构,内置超大容量充电电池,操作简单,便于携带。
二:仪器主特点:
1.全触控超大液晶显示
操作简单,仪器配备了的全触控液晶显示屏,超大显示界面所有操作步骤中文菜单显示,每一步都非常清楚,操作人员不需要额外的专业培训就能使用。轻轻触摸一下就能完成整个过程的测量,是目前非常理想的智能型测量设备。
2.语音智能
该仪器内部配备了语音提示功能,超大液晶全中文显示,再配合智能语音提示,使仪器智能化程度更高
3.全自动模拟雷击
由于雷击过程非常短暂的,而传统模拟雷击均为手动控制,其输出电流的控制根本无法精确的控制在很短暂的时间内完成。本仪器通过内部中央处理器全自动控制模拟输出电路可以精确控制其冲击电流的冲击时间,从而更加真实的还原出雷击现象,对于监测器动作的检测数据更有实际意义。
4.功能齐全,性能强大
本仪器具备监视器电流校验、监视器动作测试和电流测量等多种测试功能,性能强大、测试精度高
5.一体化结构,体积小、重量轻
仪器内部高度集成化,为试验提供了一种为简单便捷的试验手段。
6.微型精密打印机
内置微型精密热敏打印机,可非常方便的打印测试结果数据。
7.超大容量电池,简单便携
仪器内置超大容量锂电池,一次充电可连续工作几十个小时,*省去了工作现场寻找工作电源的麻烦。
三:主要技术参数
1 | 使用条件 | -20℃ ~ 50℃ | RH<80% |
2 | 充电电源 | AC 220V±10% | 允许发电机
|
3 | 锂电池 | 内置超大容量里电池 | 待机72小时左右 |
模拟雷击1000次以上 | |||
4 | 打印机 | 内置精密热敏打印机,可方便打印测试结果数据 | |
5 | 电流输出 | 范 围 | 0~10mA |
分辨率 | 0.001mA | ||
精 度 | 1% | ||
6 | 动作次数 | 0~100次 | |
7 | 技术依据标准 | 1、GB11032-2000《交流无间隙金属氧化物避雷器》 2、JB/T10492-2004《交流无间隙金属氧化物避雷器用监测器》 3、GB50150-2006《电气装置安装工程电力设备交接试验标准》 4、Q/GDW168-2008《输变电设备状态检修试验规程》 | |
8 | 主机外型尺寸 | 320(L)×270(W)×140(H) | |
9 | 重 量 | 3.9Kg |
更多产品详情请访问武汉华顶电力设备有限公司
对某110kV电缆线路进行时发现其变电站内部分存在局部放电信号,精确定位结果显示局部放电缺陷位于该电缆线路B相GIS终端电缆仓内。随后,对B相电缆仓进行开仓检查并更换电缆终端,更换后异常信号消失。对更换下来的GIS终端进行X光检测和解体发现在环氧套管地电位金属内衬件端部存在3.9mm不规则气腔,验证了局部放电检测的有效性。
(二)检测分析方法
采用高频局部放电检测仪器对上述110kV电缆终端接地箱进行检测,检测图谱如图5-11所示。由检测图谱可知,在三相电缆接地箱处均能检测到明显的局部放电信号,其中,B相幅值大,达到200mV左右;A、C相幅值较小均在80mV左右。且在同一同步信号下,A、C相放电信号与B相信号极性相反,表明局部放电信号穿过B相传感器的方向与穿过其他两相传感器的方向相反,即局部放电信号沿着B相电缆终端接地线传播,再经同一接地排传播至其他两相的接地线,因此确定局部放电源位于B相GIS电缆终端。同时,采用特高频传
对某110kV电缆线路进行时发现其变电站内部分存在局部放电信号,精确定位结果显示局部放电缺陷位于该电缆线路B相GIS终端电缆仓内。随后,对B相电缆仓进行开仓检查并更换电缆终端,更换后异常信号消失。对更换下来的GIS终端进行X光检测和解体发现在环氧套管地电位金属内衬件端部存在3.9mm不规则气腔,验证了局部放电检测的有效性。
(二)检测分析方法
采用高频局部放电检测仪器对上述110kV电缆终端接地箱进行检测,检测图谱如图5-11所示。由检测图谱可知,在三相电缆接地箱处均能检测到明显的局部放电信号,其中,B相幅值大,达到200mV左右;A、C相幅值较小均在80mV左右。且在同一同步信号下,A、C相放电信号与B相信号极性相反,表明局部放电信号穿过B相
对某110kV电缆线路进行时发现其变电站内部分存在局部放电信号,精确定位结果显示局部放电缺陷位于该电缆线路B相GIS终端电缆仓内。随后,对B相电缆仓进行开仓检查并更换电缆终端,更换后异常信号消失。对更换下来的GIS终端进行X光检测和解体发现在环氧套管地电位金属内衬件端部存在3.9mm不规则气腔,验证了局部放电检测的有效性。
(二)检测分析方法
采用高频局部放电检测仪器对上述110kV电缆终端接地箱进行检测,检测图谱如图5-11所示。由检测图谱可知,在三相电缆接地箱处均能检测到明显的局部放电信号,其中,B相幅值大,达到200mV左右;A、C相幅值较小均在80mV左右。且在同一同步信号下,A、C相放电信号与B相信号极性相反,表明局部放电信号穿过B相传感器的方向与穿过其他两相传感器的方向相反,即局部放电信号沿着B相电缆终端接地线传播,再经同一接地排传播至其他两相的接地线,因此确定局部放电源位于B相GIS电缆终端。同时,采用特高频传感器和高速示波器对上述局部放电源位置进行了确认。
(a)A相检测图谱(b)B相检测图谱(c)C相检测图谱
图5-11 110kV电缆终端接地箱处高频局部放电检测图谱
采用GE数字化放射摄影系统(CT)对该环氧套管进行X光扫描,扫描结果如图5-12所示,由图可见,在该GIS终端套管底部内衬件端部存在3.9mm不规则气隙,解体切割后的气隙如图5-13所示
传感器的方向与穿过其他两相传感器的方向相反,即局部放电信号沿着B相电缆终端接地线传播,再经同一接地排传播至其他两相的接地线,因此确定局部放电源位于B相GIS电缆终端。同时,采用特高频传感器和高速示波器对上述局部放电源位置进行了确认。
(a)A相检测图谱(b)B相检测图谱(c)C相检测图谱
图5-11 110kV电缆终端接地箱处高频局部放电检测图谱
采用GE数字化放射摄影系统(CT)对该环氧套管进行X光扫描,扫描结果如图5-12所示,由图可见,在该GIS终端套管底部内衬件端部存在3.9mm不规则气隙,解体切割后的气隙如图5-13所示
感器和高速示波器对上述局部放电源位置进行了确认。
(a)A相检测图谱(b)B相检测图谱(c)C相检测图谱
图5-11 110kV电缆终端接地箱处高频局部放电检测图谱
采用GE数字化放射摄影系统(CT)对该环氧套管进行X光扫描,扫描结果如图5-12所示,由图可见,在该GIS终端套管底部内衬件端部存在3.9mm不规则气隙,解体切割后的气隙如图5-13所示