品牌
生产厂家厂商性质
武汉市所在地
HDCJ雷击冲击电压发生器满足现行标准、国家标准及有关行业标准。本套装置所输出电压波形及效率:(负荷电容小于5500pF时包含分压器电容)下,可产生标准雷电冲击电压波形数量:3个。
A.标准雷电冲击全波电压波形
波头时间:1.2±30%μs,波尾时间:50±20%μs,过冲:小于5%,效率:不低于90%。±1.2/50μs标准雷电冲击电压全波,效率大于90%。
B.标准雷电冲击截波电压波形。
波头时间:1.2±30%μs,过冲:小于5%,截断时间:2~6μs,电子时延控制,效率:不低于90%,采用截断装置可产生截断时间2~6μs的雷电截波,截波分散性小于100ns。
C.变压器电抗器雷电冲击电压试验的示伤电流全波波形。
二.执行标准:
GB311.1-1997高压输变电设备的绝缘配合
GB/T16927.1-1997高电压试验技术,一般试验要求
GB/T16927.2-1997高电压试验技术,测量系统
GB/T16896.1-1997高电压冲击试验用数字记录仪
ZB F24 001-90冲击电压测量实施细则
GB191 包装运标志
GB4208 外壳防护等级
GB813-89 冲击试验用示波器及峰值表
三.使用条件:
本冲击电压发生器试验系统装置主要适用于110kV及以下电力产品的雷电冲击电压全波,也可用于其它产品的冲击试验。
1.海拔高度不超过1500m
2.环境温度:-15~+50℃
3.空气相对湿度:≤90%
4.安装使用地点:户内使用,可移动
5.必须设有一个屏蔽控制室及可靠接地点,接地电阻<1Ω!
6.冲击发生器(型号:HDCJ-900/33.7)
A.冲击发生器主要技术参数
B.标称雷电波冲击电压:HDCJ-900kV
C.标称容量(能量):33.75kJ
D.级电容:0.6μF,100kV(100kV-0.6μF)干式全绝缘封装
E.级电压:±150kV
F.级数/级容量:5 / 6.75kJ
G.输出波形:±1.2/50μs标准雷电冲击电压全波,效率大于90%;
H.同步范围:大于20%
I.使用持续时间:
小于80%额定工作电压时可连续工作
大于80%额定工作电压时可间断工作
J.幅值调节误压差小于1%,输出电不大于10%设备标称电压。
K.同步误动率:小于1%
L.底座:2m × 1.5m (脚轮移动)。
高度:约3.5米。
重量:约860kg。
7.冲击电压发生器的技术说明
A.发生器的结构
B.采用瑞士HAEFELY公司SGS系列的主回路设计,从而实现了整体超小型。
C.采用每分钟一转的低速齿轮齿条传动机构调整各级球隙,不仅无噪声、磨损小,而且定位快速、准确。
D.采用弹簧压接、方便拔插的调波电阻固定机构,保证了接触的可靠性,使输出波形光滑无毛刺。
E.配合PLC电气控制系统的脉冲放大器可使同步球隙具有20%以上的触发范围,保证触发的可靠性,控制方便可靠。
F.同步球隙的触发无极性效应,无须双边触发。
8.主电容器
A.主电容器采用高密度固体电容器,每台电容量为0.6±0.05μF,直流工作电压为±100kV,电容器固有电感小于0.2μH,重量轻,体积小,
B.电容器在正常工作状态和工作环境下凹凸变形小于1mm。
C.电容器为固体绝缘介质和外壳干式全绝缘封装,不存在漏油、变形等问题。
9.调波元件
A.波头、波尾电阻具有足够的热容量,可保证发生器长时间连续运行。
B.充电电阻具有足够的热容量,可保证发生器长时间连续运行。
C.波头、波尾电阻采用板形结构,使用康铜丝无感绕制而成,外部采用绝缘树脂真空浇铸,接头为弹簧压接式,易于安装。
D.波头、波尾电阻的连接头采用3mm不锈钢线切割制造。
E.共有1组半波头电阻、1组半波尾电阻用于雷电冲击,另有1组充电电阻和保护电阻。
10.控制、保护系统
采用PLC电气控制系统为冲击电压发生器主体部分提供各种控制,*冲击试验的各种控制
功能。PLC控制系统采用进口PLC器件,与设备主体的连接采用两芯光缆。
A.PLC全自动控制系统实现手动控制。软件包可以与测量和波形分析用的峰值电压表、示波器等配合使用,实现冲击电压试验系统计算机测控一体化。
B.控制系统具备以下控制功能:
1.控制功能具有手动控制,各层次功能相对独立,确保系统的可靠性。
2.采用可控硅调压方式,具有充电电压反馈测量系统。
3.点火球隙可手动,并在控制面板上显示。
4.采用函数控制恒流充电方式,充电电压的稳定度可达到0.5%。
5.液晶面板可指示冲击发生器的充电电压,精度为1%。
6. 具有充电异常保护功能,手动发出触发点火脉冲
7.设备主体及充电部分接地和接地解除控制。
8.手动控制充电电压的充电过程
9.手动响警铃报警
10.具有过电流和过电压自动保护
C.同步球隙*级采用三电极球隙触发,触发范围大于20%。
D.安全接地系统
E.采用电磁铁自动接地机构通过一个接地电阻将发生器的*级电容接地。
F.接地操作与充电控制具有连锁保护,确保操作安全正常。
11.主要配置的设备
A.整流充电电源(与冲击本体一体化)
型 号:HDLGR-100/100
额定电压:Un = 100kV DC (正或负极性)
额定电流:In = 100mA (额定电压下)
电压控制:可控硅模块调压,调压范围0~ Un
极性转换:手动变换高压硅堆的方向
输入电压:220V 单相电压
电源频率:50/60 Hz
电源消耗:约5kVA
B.弱阻尼电容分压器
型 号:HDCR-900kV/500pF
额定电压:900kV
额定电容:500pF
电容节数:2节,每节电容:1000pF(375-1200脉冲电容器)
方波响应:部分响应时间小于100ns,过冲小于10%
分压比:约500,分压比不确定度:小于1%
C.测量设备
型 号:HDIMS-1000数字化冲击测量系统
幅值测量:HZ(IPM)23型冲击峰值电压表
输入范围:150V ~ 1600V(冲击电压)
测量不确定度:小于1%
波形测量:TDS1012C-SC数字示波器,采样率1.0GS/s,带宽大于100MHz,分辨率8bit,记录长度2.5k字节(可满足冲击试验要求),2通道
波形分析:工业控制计算机工作站(采用15寸液晶显示屏)
冲击测量软件包:冲击波形参数计算及显示,波形比较功能,波形的放大、缩小及平移,波形的存储及调用,波形的成图及报告编写
附 件:高性能100倍衰减器1支
隔离滤波屏蔽设
更多产品咨询请访问武汉华顶电力设备有限公司
罗格夫斯基线圈(Rogowski coils),简称罗氏线圈,又被称为磁位计,早被用于磁路的测量。一般情况下罗氏线圈为圆形或矩形,线圈骨架可以选择空心或磁性骨架,导线均匀绕制在骨架上。罗氏线圈的结构示意图如图 5-1所示。
5-1 罗氏线圈结构示意图
罗氏线圈的原边为流过被测电流的导体,副边为多匝线圈。当有交变的电流流过穿过线圈中心的导体时,会产生交变的磁场。副边线圈与被测电流产生的磁通相交链,整个罗氏线圈副边产生的磁链正比于导体中流过的电流大小。变化的磁链产生电动势,且电动势的大小与磁链的变化率成正比。令流过导体的电流为,线圈副边感应出的电动势为,基于安培环路定律和法拉第电磁感应定律,可由Maxwell方程[8]解得:(5-1)
其中M为罗氏线圈的互感系数。
根据罗氏线圈负载的不同,线圈可分为外积分式和自积分式[9]。外积分式罗氏线圈又称作窄带型电流传感器,具有较好的抗干扰能力。当采用外积分式罗氏线圈时,为得到电流的波形,线圈的输出通常需要经过无源RC外积分电路、由运放构成的有源外积分电路,以及数自积分电路等负载。外积分式罗氏线圈受积分电路频率性能影响较大,测量频率上限受到限制,一般用于测量兆赫兹以下的中低频率电流。自积分式罗氏线圈又称作宽带型电流传感器,具有相对较宽的检测频带。由于其直接采用积分电阻,因此频率响应较快,适用于测量上升时间较短的脉冲电流信号。
罗氏线圈根据其结构不同可分为挠性罗氏线圈、刚性罗氏线圈和PCB型罗氏线圈[10-11]。挠性罗氏线圈以能够*的挠性材料作为线圈骨架,将导线均匀绕在骨架上。测量时将骨架弯曲成一个闭合的环,使通电导体冲线圈中心穿过。这种线圈使用方便,但测量精确度低、稳定性不高。刚性罗氏线圈采用刚性结构线圈骨架,在结构上更容易使得绕线能够均匀分布,大大提高了抗外磁场干扰的能力,从而提高了测量的精确度。这种线圈的测量精确度和可靠性较高,但在实际使用中会受到现场安装条件的限制。PCB型罗氏线圈是一种基于印刷电路板(PCB)骨架的罗氏线圈,相比传统的罗氏线圈,其线圈密度、骨架截面积以及线圈截面与中心线的垂直程度都有极大提高,是一种高精度的罗氏线圈。这种线圈现在还处于起步阶段,其实际应用还有一定的距频局部放电检测基本原理
用于局部放电检测的罗氏线圈称为高频电流传感器,其有效的频率检测范围一般为3MHz~30MHz。由于所测量的局部放电信号是微小的高频电流信号,传感器需要在较宽的频带内有较高的灵敏度。因此HFCT选用高磁导率的磁芯作为线圈骨架,并通常采用自积分式线圈结构[13]。使用H喀什市雷击冲击电压发生器出厂价喀什市雷击冲击电压发生器出厂价FCT进行局部放电检测的等效电路图如图 5-2所示。其中为被测导体中流过的局部放电脉冲电流,M为被测导体与HFCT线圈之间的互感,Ls为线圈的自感,Rs为线圈的等效电阻,Cs为线圈的等效杂散电容,R为负载积分电阻,uo(t)为HFCT传感器的输出电压信号。
高频电流传感器局部放电检测等效电路图
在传感器参数满足自积分条件的情况下,忽略杂散电容Cs,计算可得系统的传递函数为[1 (5-2)
其中N为线圈的绕线匝数。