分散式一体化生活污水处理设备的会议记录
时间:2020-09-26 阅读:122
分散式一体化生活污水处理设备的会议记录
小宇环保公司生产各种污水处理设备,像生活污水,农村污水,医院污水,屠宰污水,养殖污水等,型号齐全,常用型号有:WSZ-A-0.5、WSZ-A-1、WSZ-A-1.5、WSZ-A-2、WSZ-A-3、WSZ-A-4、WSZ-A-5、WSZ-A-10。也可根据客户要求定制。
公司派专车送货上门、派专ye技术上门安装,本地常年有售后人员。本产品由Yang2020.09.26发布
工艺流程说明
污水经格栅进入调节池后经提升泵进入生物反应器,通过PLC控制器开启曝气机充氧,生物反应器出水经循环泵进入膜分离处理单元,浓水返回调节池。反冲洗泵利用清洗池中处理水对膜处理设备进行反冲洗,反冲污水返回调节池。通过生物反应器内的水位控制提升泵的启闭。膜单元的过滤操作与反冲洗操作可自动或手动控制。
当膜单元需要化学清洗操作时,关闭进水阀和污水循环阀,打开药洗阀和药剂循环阀,启动药液循环泵,进行化学清洗操作。膜生物反应器(MBR工艺)是膜分离技术与生物技术有机结合的新型污水处理技术,它利用膜分离设备将生化反应池中的活性污泥和大分子有机物截留住,省掉初沉池和二沉池。活性污泥浓度因此大大提高,水力停留时间和污泥停留时间可以分别控制,而难降解的物质在反应器中不断的反应、降解,大大强化了生物反应器的功能。
膜分离法以选择性透过膜为分离介质,当膜两侧存在某种推动力(如压力差、浓度差、电位差等)时,原料侧组分选择性透过膜,以达到分离、除去有害组分的目的。目前,工业上应用的较为成熟的工艺为电渗析、反渗透、超滤、液膜。其它方法如膜生物反应器、微滤等尚处于基础理论研究阶段,尚未进行工业应用。电渗析法是在直流电场作用下,以电位差为推动力,利用离子交换膜的选择透过性,从而使废水得到净化。
SBR工艺与调节、水解酸化工艺的结合
SBR工艺采用间歇进水、间歇排水,SBR反应池有一定的调节功能,可以在一定程度上起到均衡水质、水量的作用。通过供气系统、搅拌系统的设计,自动控制方式的设计,闲置期时间的选择,可以将SBR工艺与调节、水解酸化工艺结合起来,使三者合建在一起,从而节约投资与运行管理费用。
在进水期采用水下搅拌器进行搅拌,进水电动阀的关闭采用液位控制,根据水解酸化需要的时间确定开始曝气时刻,将调节、水解酸化工艺与SBR工艺有机的结合在一起。反应池进水开始作为闲置期的结束则可以使整个系统能正常运行。具体操作方式如下所述:
进水开始既为闲置结束,通过上一组SBR池进水结束时间来控制;
进水结束通过液位控制,整个进水时间可能是变化的。
水解酸化时间由进水开始至曝气反应开始,包括进水期,这段时间可以根据水量的变化情况与需要的水解酸化时间来确定,不小于在小流量下充满SBR反应池所需的时间。
曝气反应开始既为水解酸化搅拌结束,曝气反应时间可根据计算得出。
沉淀时间根据污泥沉降性能及混合液污泥浓度决定,它的开始即为曝气反应的结束。
排水时间由滗水器的性能决定,滗水结束可以通过液位控制。
闲置期的时间选择是调节、水解酸化及SBR工艺结合好坏的关键。闲置时间的长短应根据废水的变化情况来确定,实际运行中,闲置时间经常变动。通过闲置期间的调整,将SBR反应池的进水合理安排,使整个系统能正常运转,避免整个运行过程的紊乱。
运行
原污水经预处理系统(格栅、沉砂除油)后首*入OCO生物反应池的厌氧区(1区),在此与沉淀池回流进入的活性污泥混合,然后进入缺氧区(2区),缺氧区与好氧区(3区)之间为一半圆形隔墙。在工艺过程中,混合液在缺氧和好氧状态下可循环20~30次。以上三个容积区内均设置相应数量的潜水搅拌推流装置,以形成一定水平流速而不发生污泥沉淀。在外侧好氧区内设有水下微孔曝气装置。所有水下部件均可分组提起检修,不必放空水池。
1除磷
OCO池的内圈为厌氧区,停留时间约为1~1.5h,对于一般C/P值为18的市政污水来说约有40~60%的磷靠生物方法去除(磷去除标准,丹麦为<1.5mg/L,欧共体为<1 mg/L),这是因为原水中易降解有机物较高,但是当进水BOD浓度比较低(如70~80mg/L),除磷效果会降低,作为对生物除磷的补充,多数OCO处理厂同时还采用铁盐进行化学除磷,或将化学除磷作为一种备用措施。
有利于生物除磷的条件同时也降低了丝状菌的数量,改善了污泥的沉降性能。给二沉池的运行创造了有利条件。
2脱氮
市政污水中N多以NH3-N的形式存在,因此脱氮包括两个过程:硝化及反硝化。需要好氧及缺氧两种状态的存在。另外还需要足够的泥龄,以方便硝化菌的生长及提供反硝化菌足够的易降解有机物,以保证一定的反硝化速率。
硝化与反硝化的矛盾在于氮在反硝化前首先需要氧化,而氨氮的氧化会同时导致污水中易降解有机物的氧化,进而减缓反硝化的进行。传统的解决方法是将有机物充足的原污水首先引入非曝气区,并从曝气区回流大量富含硝态氮的污水。
在OCO工艺中,污水从厌氧区流入缺氧区,为反硝化菌提供了合适的基质(易降解有机物),以便反硝化能够快速进行。硝态氮从好氧区回流至缺氧区(内回流),含氨氮的水则进入好氧区完成硝化反应。
OCO工艺的一个主要特点是:好氧区与缺氧区之间的污水交换,即内回流不需泵送,以上两个区域之间有一段是相通的。两者之间的交换形式及量的大小是依靠搅拌器的控制来实施,因此节省能耗。当搅拌器运转时,湍流增强,好氧区与缺氧区混合程度增强,当搅拌器停止运转时,两区之间的混合程度较低。此时测得的溶氧状况如图2所示,好氧区与缺氧区的区分很明显。OCO反应池的构造和搅拌器的循环工作可保证好氧区和缺氧区之间很高的回流比,这种频繁的变化是该工艺有效脱氮的关键之一。
回流的控制还可以改变好氧区与缺氧区的容积。当夏季暴雨造成冲击负荷,可将2、3区均调为好氧区;夜间低负荷,可将3区用来脱氮。因此OCO工艺中好氧区与缺氧区容积的分配是动态的。可以在特定时间和地点,根据特点的污水组分进行调节。
回流程度由预设的程序来完成。并由安装在好氧区首端的在线溶氧探头控制。