半导体激光器-激光器件

半导体激光器半导体激光器-激光器件

参考价: 面议

具体成交价以合同协议为准
2020-11-23 21:54:47
214
产品属性
关闭
上海五久自动化设备有限公司

上海五久自动化设备有限公司

免费会员
收藏

组合推荐相似产品

产品简介

半导体激光器实验装置是以一定的半导体材料做工作物质而产生激光的器件。.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。

详细介绍

半导体激光器实验装置是以一定的半导体材料做工作物质而产生激光的器件。.其工作原理是通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。

半导体激光器仪器简介

图1 激光器

 

工作原理

 

根据固体的能带理论,半导体材料中电子的能级形成能带。高能量的为导带,低能量的为价带,两带被禁带分开。引入半导体的非平衡电子-空穴对复合时,把释放的能量以发光形式辐射出去,这就是载流子的复合发光。

一般所用的半导体材料有两大类,直接带隙材料和间接带隙材料,其中直接带隙半导体材料如GaAs(砷化镓)比间接带隙半导体材料如Si有高得多的辐射跃迁几率,发光效率也高得多。

半导体复合发光达到受激发射(即产生激光)的必要条件是:①粒子数反转分布分别从P型侧和n型侧注入到有源区的载流子密度十分高时,占据导带电子态的电子数超过占据价带电子态的电子数,就形成了粒子数反转分布。②光的谐振腔在中,谐振腔由其两端的镜面组成,称为法布里一珀罗腔。③高增益用以补偿光损耗。谐振腔的光损耗主要是从反射面向外发射的损耗和介质的光吸收。

是依靠注入载流子工作的,发射激光必须具备三个基本条件:

(1)要产生足够的 粒子数反转分布,即高能态粒子数足够的大于处于低能态的粒子数;

(2)有一个合适的谐振腔能够起到反馈作用,使受激辐射光子增生,从而产生激光震荡;

(3)要满足一定的阀值条件,以使光子增益等于或大于光子的损耗。

工作原理是激励方式,利用半导体物质(即利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈,产生光的辐射放大,输出激光。

优点:体积小、重量轻、运转可靠、耗电少、效率高等。

封装技术

5.1技术介绍

封装技术大都是在分立器件封装技术基础上发展与演变而来的,但却有很大的特殊性。一般情况下,分立器件的管芯被密封在封装体内,封装的作用主要是保护管芯和完成电气互连。而封装则是完成输出电信号,保护管芯正常工作,输出:可见光的功能,既有电参数,又有光参数的设计及技术要求,无法简单地将分立器件的封装用于。

5.2发光部分

的核心发光部分是由p型和n型半导体构成的pn结管芯,当注入pn结的少数载流子与多数载流子复合时,就会发出可见光,紫外光或近红外光。但pn结区发出的光子是非定向的,即向各个方向发射有相同的几率,因此,并不是管芯产生的所有光都可以释放出来,这主要取决于半导体材料质量、管芯结构及几何形状、封装内部结构与包封材料,应用要求提高的内、外部量子效率。常规Φ5mm型封装是将边长0.25mm的正方形管芯粘结或烧结在引线架上,管芯的正极通过球形接触点与金丝,键合为内引线与一条管脚相连,负极通过反射杯和引线架的另一管脚相连,然后其顶部用环氧树脂包封。反射杯的作用是收集管芯侧面、界面发出的光,向期望的方向角内发射。顶部包封的环氧树脂做成一定形状,有这样几种作用:保护管芯等不受外界侵蚀;采用不同的形状和材料性质(掺或不掺散色剂),起透镜或漫射透镜功能,控制光的发散角;管芯折射率与空气折射率相关太大,致使管芯内部的全反射临界角很小,其有源层产生的光只有小部分被取出,大部分易在管芯内部经多次反射而被吸收,易发生全反射导致过多光损失,选用相应折射率的环氧树脂作过渡,提高管芯的光出射效率。用作构成管壳的环氧树脂须具有耐湿性,绝缘性,机械强度,对管芯发出光的折射率和透射率高。选择不同折射率的封装材料,封装几何形状对光子逸出效率的影响是不同的,发光强度的角分布也与管芯结构、光输出方式、封装透镜所用材质和形状有关。若采用尖形树脂透镜,可使光集中到的轴线方向,相应的视角较小;如果顶部的树脂透镜为圆形或平面型,其相应视角将增大。

5.3驱动电流

图6

一般情况下,的发光波长随温度变化为0.2-0.3nm/℃,光谱宽度随之增加,影响颜色鲜艳度。另外,当正向电流流经pn结,发热性损耗使结区产生温升,在室温附近,温度每升高1℃,的发光强度会相应地减少1%左右,封装散热;时保持色纯度与发光强度非常重要,以往多采用减少其驱动电流的办法,降低结温,多数的驱动电流限制在20mA左右。但是,的光输出会随电流的增大而增加,很多功率型的驱动电流可以达到70mA、100mA甚至1*,需要改进封装结构,全新的封装设计理念和低热阻封装结构及技术,改善热特性。例如,采用大面积芯片倒装结构,选用导热性能好的银胶,增大金属支架的表面积,焊料凸点的硅载体直接装在热沉上等方法。此外,在应用设计中,PCB线路板等的热设计、导热性能也十分重要。

进入21世纪后,的高效化、超高亮度化、全色化不断发展创新,红、橙光效已达到100Im/W,绿为501m/W,单只的光通量也达到数十Im。芯片和封装不再沿龚传统的设计理念与制造生产模式,在增加芯片的光输出方面,研发不仅于改变材料内杂质数量,晶格缺陷和位错来提高内部效率,同时,如何改善管芯及封装内部结构,增强内部产生光子出射的几率,提高光效,解决散热,取光和热沉优化设计,改进光学决定因素

蓝光DVD

半导体光电器件的工作波长是和制作器件所用的半导体材料的种类相关的。半导体材料中存在着导带和价带,导带上面可以让电子自由运动,而价带下面可以让空穴自由运动,导带和价带之间隔着一条禁带,当电子吸收了光的能量从价带跳跃到导带中去时,就把光的能量变成了电,而带有电能的电子从导带跳回价带,又可以把电的能量变成光,这时材料禁带的宽度就决定了光电器件的工作波长。材料科学的发展使我们能采用能带工程对半导体材料的能带进行各种精巧的裁剪,使之能满足我们的各种需要并为我们做更多的事情,也能使半导体光电器件的工作波长突破材料禁带宽度的限制扩展到更宽的范围。

损耗关系

激光器的腔体可以有谐振腔和外腔之分。在谐振腔里,激光器的损耗有很多种类,比如偏折损耗,法布里珀罗谐振腔就有较大偏折损耗,而共焦腔的偏折损耗较小,适合于小功率连续输出激光,还比如反转粒子的*跃迁损耗(这类损耗可以归为白噪声)等等之类的,都是腔长长损耗大。激光器阈值电流不过就是能让激光器起振的电流,谐振腔长短的不同可以使得阈值电流有所不同,中,像边发射激光器腔长较长,阈值电流相对较大,而垂直腔面发射激光器腔长极短,阈值电流就非常低了。这些都不是一两句话可以说的清楚的,它们各自的速率方程也都不同,不是一两个式子能解释的。另外谐振腔长度不同也可以达到选模的作用,即输出激光的频率不同。

发展概况

简介

又称激光二极管(LD)。进入八十年代,人们吸收了半导体物理发展的成果,采用了量子阱(QW)和应变量子阱(SL-QW)等新颖性结构,引进了折射率调制Bragg发射器以及增强调制Bragg发射器技术,同时还发展了MBE、MOCVD及CBE等晶体生长技术新工艺,使得新的外延生长工艺能够精确地控制晶体生长,达到原子层厚度的精度,生长出优质量子阱以及应变量子阱材料。于是,制作出的LD,其阈值电流显著下降,转换效率大幅度提高,输出功率成倍增长,使用寿命也明显加长。

小功率

用于信息技术领域的小功率LD发展极快。例如用于光纤通信及光交换系统的分布反馈(DFB)和动态单模LD、窄线宽可调谐DFB-LD、用于光盘等信息处理技术领域的可见光波长(如波长为670nm、650nm、630nm的红光到蓝绿光)LD、量子阱面发射激光器以及超短脉冲LD等都得到实质性发展。这些器件的发展特征是:单频窄线宽、高速率、可调谐以及短波长化和光电单片集成化等。

高功率

1983年,波长800nm的单个LD输出功率已超过100mW,到了1989年,0.1mm条宽的LD则达到3.7W的连续输出,而1cm线阵LD已达到76W输出,转换效率达39%。1992年,美国人又把指标提高到一个新水平:1cm线阵LD连续波输出功率达121W,转换效率为45%。输出功率为120W、1500W、3kW等诸多高功率LD均已面世。高效率、高功率LD及其列阵的迅速发展也为全固化激光器,亦即半导体激光泵浦(LDP)的固体激光器的迅猛发展提供了强有力的条件。

为适应EDFA和EDFL等需要,波长980nm的大功率LD也有很大发展。配合光纤Bragg光栅作选频滤波,大幅度改善其输出稳定性,泵浦效率也得到有效提高。

产品分类

 

(1)异质结构激光器

(2)条形结构激光器

(3)GaAIAs/GaAs激光器

(4)InGaAsP/InP激光器

(5)可见光激光器

(6)远红外激光器

(7)动态单模激光器

(8)分布反馈激光器

(9)量子阱激光器

(10)表面发射激光器

(11)微腔激光器

 

上一篇:TRUMPF激光器不出光温度过低 下一篇:NKT激光器保护电路故障
热线电话 在线询价
提示

仪表网采购电话