MAVEn™高通量16通道果蝇代谢监测系统

MAVEn™高通量16通道果蝇代谢监测系统

参考价: 面议

具体成交价以合同协议为准
2021-04-20 08:48:06
164
产品属性
关闭
北京易科泰生态技术有限公司

北京易科泰生态技术有限公司

免费会员
收藏

组合推荐相似产品

产品简介

MAVEn™高通量16通道果蝇代谢监测系统

详细介绍


果蝇作为经济实用的模式动物,可用于中枢神经系统紊乱、炎症性病变、心血管疾病、癌症以及糖尿病等治疗研究,而这些疾病的发生从生理上来说都与生物个体*的代谢功能异常密切相关。

MAVEn™高通量16通道果蝇代谢监测系统是的美国Sable Systems International动物代谢测量公司生产的一款16通道、高分辨率及自动化的果蝇代谢监测仪器,可广泛用于代谢紊乱造成的各种流行疾病治疗的机理研究。

image.png

MAVEn™果蝇代谢系统作为果蝇代谢分型监测方面的产品,主要具备以下特点:

1. 改变了传统的单只果蝇的封闭或半封闭式测量模式,实现每个测量室都有实时气流通过的*开放式测量,避免了测量时内出现缺氧(hypoxia)或高碳酸血症(hypercapnia),可一次测量多达16只个体。

2. 15秒就可以完成一只果蝇的代谢监测,这代表了目前技术的水平。

3. 数据可以通过SD卡把带时间标签的CSV格式直接导出到电脑。

4. 可选配FLIC果蝇觅食、AD-2果蝇活动、气体(氧气、二氧化碳、水汽以及其它可检测气体)等监测单元。

5. 参考文献*多,高达4万多篇,属于前沿科技。

image.png

具体性能指标:

1. 气流流速:5毫升/分钟-200毫升/分钟,质量流量计,PID精确控制,精度为2%。

2. 昆虫测量时间:15秒-3小时可程序化选择;基线测量时间:15秒-3小时可程序化选择。

3. 气压测量:分辨率1Pa,精度0.05%。

4. 光照水平:0.1-5000勒克斯。

5. 温度测量:0-50℃,分辨率0.01℃,精度±0.25℃。

6. 模拟输入:6个模拟输入,16bit分辨率,-5至+5伏电压信号,可接SSI其它仪器或实验室其它气体分析仪等。

7. 数据格式:CSV格式;数据存储:SD卡,*支持32G的SD卡。

8. image.png双通道高精度差分式氧气分析测量仪:测量技术:燃料电池原理氧气传感器,双通道;氧气浓度量程0-*(用户可自定义设置5个级别);差值量程±50%;精度0.1%(O2浓度2-*时);分辨率0.0001%O2;漂移< 0.01%每小时(温度恒定情况下);响应时间小于7秒;24小时漂移<0.01%;20分钟噪音<3ppm RMS;数字过滤(噪音)0-40秒可调,增幅0.2秒,内置A/D转换器分辨率16bits;温度、压力补偿;传感器温度测量范围0-60℃,精度0.2℃,分辨率0.001℃;大气压测量分辨率0.0001kPa,精度为满量程的0.05%;适用流量范围5-2000mL/min;4通道模拟信号输出(0-5V BNC)可输出通道1的氧气浓度,通道2的氧气浓度,1和2的差值,大气压;数字输出:RS-232;具4行文字LCD显示屏,带背光,可同时显示2个通道的氧气含量和它们的差值,以及大气压;*PID(Proportional-Integral-Derivative)温控单元,保证内部氧气传感器温度恒定,进一步提高了氧气测量的精度和稳定性;供电12-24VDC,8A,配交流电适配器;工作温度:5-45℃,无冷凝;重量6.4kg;尺寸43.2cm×35.6cm×20.3cm

9. 超高精度二氧化碳分析测量仪:用于测量微小昆虫(比如果蝇、蚊子等)或蜱螨类微小动物的呼吸代谢,可同时测量CO2浓度和H2O浓度;CO2量程0-3000ppm;准确度<1%;分辨率0.01ppm;H2O量程0-60mmol/mol;准确度1%;

10. 二次抽样单元:内置气泵、精密针阀、质量流量计,可用来给气流样本做二次抽样,也可单独作为气源使用;流量范围5-2000mL/min;精度为读数的10%;分辨率1mL/min;具备2行显示LCD显示屏;带0-5V BNC模拟信号输出;数字输出RS-232;供电12-15VDC,20-350mA,配交流电适配器;工作温度:0-50℃,无冷凝;重量1.5kg;尺寸16cm×13cm×20cm;

产地:美国

文献案例:

在2016年已发表的果蝇有关文献中,使用SSI果蝇代谢监测系统的达14篇,2015年11篇,截止目前相关文献共计500多篇。

1. Andrew N R, Ghaedi B, Groenewald B. The role of nest surface temperatures and the brain in influencing ant metabolic rates[J]. Journal of Thermal Biology, 2016, 60: 132-139.

2. Baaren J, Dufour C M S, Pierre J S, et al. Evolution of life‐history traits and mating strategy in males: a case study on two populations of a Drosophila parasitoid[J]. Biological Journal of the Linnean Society, 2016, 117(2): 231-240.

3. Bartholomew N R, Burdett J M, VandenBrooks J M, et al. Impaired climbing and flight behaviour in Drosophila melanogaster following carbon dioxide anaesthesia[J]. Scientific reports, 2015, 5.

4. Basson C H, Clusella-Trullas S. The behavior-physiology nexus: behavioral and physiological compensation are relied on to different extents between seasons[J]. Physiological and Biochemical Zoology, 2015, 88(4): 384-394.

5. Bosco G, Clamer M, Messulam E, et al. EFFECTS OF OXYGEN CONCENTRATION AND PRESSURE ON Drosophila melanogaster: OXIDATIVE STRESS, MITOCHONDRIAL ACTIVITY, AND SURVIVORSHIP[J]. Archives of insect biochemistry and physiology, 2015, 88(4): 222-234.

6. Casas J, Body M, Gutzwiller F, et al. Increasing metabolic rate despite declining body weight in an adult parasitoid wasp[J]. Journal of insect physiology, 2015, 79: 27-35.

7. Correa Y D C G, Faroni L R A, Haddi K, et al. Locomotory and physiological responses induced by clove and cinnamon essential oils in the maize weevil Sitophilus zeamais[J]. Pesticide biochemistry and physiology, 2015, 125: 31-37.

8. DeVries Z C, Kells S A, Appel A G. Estimating the critical thermal maximum (CT max) of bed bugs, Cimex lectularius: Comparing thermolimit respirometry with traditional visual methods[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2016, 197: 52-57.

9. Dreiss A N, Séchaud R, Béziers P, et al. Social huddling and physiological thermoregulation are related to melanism in the nocturnal barn owl[J]. Oecologia, 2016, 180(2): 371-381.

10. Duun Rohde P, Krag K, Loeschcke V, et al. A Quantitative Genomic Approach for Analysis of Fitness and Stress Related Traits in a Drosophila melanogaster Model Population[J]. International Journal of Genomics, 2016, 2016.

11. Fischer K E, Gelfond J A L, Soto V Y, et al. Health effects of long-term rapamycin treatment: the impact on mouse health of enteric rapamycin treatment from four months of age throughout life[J]. PloS one, 2015, 10(5): e0126644.

12. Groom D J E, Toledo M C B, Welch K C. Wingbeat kinematics and energetics during weightlifting in hovering hummingbirds across an elevational gradient[J]. Journal of Comparative Physiology B, 2016: 1-18.

13. Gudowska A, Boardman L, Terblanche J S. The closed spiracle phase of discontinuous gas exchange predicts diving duration in the grasshopper, Paracinema tricolor[J]. Journal of Experimental Biology, 2016: jeb. 135129.

14. Haddi K, Mendes M V, Barcellos M S, et al. Sexual Success after Stress? Imidacloprid-Induced Hormesis in Males of the Neotropical Stink Bug Euschistus heros[J]. PloS one, 2016, 11(6): e0156616.

15. Haddi K, Oliveira E E, Faroni L R A, et al. Sublethal exposure to clove and cinnamon essential oils induces hormetic-like responses and disturbs behavioral and respiratory responses in Sitophilus zeamais (Coleoptera: Curculionidae)[J]. Journal of economic entomology, 2015: tov255.

16. Horváthová T, Antol A, Czarnoleski M, et al. Does temperature and oxygen affect duration of intramarsupial development and juvenile growth in the terrestrial isopod Porcellio scaber (Crustacea, Malacostraca)?[J]. ZooKeys, 2015 (515): 67.

17. Kivelä S M, Lehmann P, Gotthard K. Do respiratory limitations affect metabolism of insect larvae before moulting: an empirical test at the individual level[J]. Journal of Experimental Biology, 2016: jeb. 140442.

18. Lebeau J, Wesselingh R A, Van Dyck H. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes[C]//Proc. R. Soc. B. The Royal Society, 2016, 283(1830): .

19. MacMillan H A, Schou M F, Kristensen T N, et al. Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura[J]. Biology letters, 2016, 12(5): .

20. Meyers P J, Powell T H Q, Walden K K O, et al. Divergence of the diapause transcriptome in apple maggot flies: winter regulation and post-winter transcriptional repression[J]. Journal of Experimental Biology, 2016: jeb. 140566.

21. Plavšin I, Stašková T, Šerý M, et al. Hormonal enhancement of insecticide efficacy in Tribolium castaneum: Oxidative stress and metabolic aspects[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2015, 170: 19-27.

22. Rodrigues C G, Krüger A P, Barbosa W F, et al. Leaf Fertilizers Affect Survival and Behavior of the Neotropical Stingless Bee Friesella schrottkyi (Meliponini: Apidae: Hymenoptera)[J]. Journal of economic entomology, 2016, 109(3): 1001-1008.

23. Thienel M, Canals M, Bozinovic F, et al. The effects of temperature on the gas exchange cycle in Agathemera crassa[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2015, 183: 126-130.

24. Williams C M, Chick W D, Sinclair B J. A cross‐seasonal perspective on local adaptation: metabolic plasticity mediates responses to winter in a thermal‐generalist moth[J]. Functional Ecology, 2015, 29(4): 549-561.

25. Williams C M, Szejner-Sigal A, Morgan T J, et al. Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates[J]. Integrative and comparative biology, 2016: icw009.


上一篇:实验室超纯水机应该如何保养? 下一篇:QG-300D金相试样切割机使用说明
热线电话 在线询价
提示

仪表网采购电话