LCpro T 全自动便携式光合仪

LCpro T 全自动便携式光合仪

参考价: 面议

具体成交价以合同协议为准
2021-04-15 11:32:34
273
产品属性
关闭
北京易科泰生态技术有限公司

北京易科泰生态技术有限公司

免费会员
收藏

组合推荐相似产品

产品简介

LCpro T 全自动便携式光合仪

详细介绍

LCpro T 全自动便携式光合仪

前言

LCpro-T便携式光合仪为新一代智能型便携式光合作用测定仪,用以测量植物叶片的光合速率、蒸腾速率、气孔导度等与植物光合作用相关的参数。仪器应用时间差分IRGA(红外气体分析)CO2分析模块和双激光调谐快速响应水蒸气传感器精密测量叶片表面CO2浓度及水分的变化情况来考察叶片与植物光合作用相关的参数。通过人工光源、CO2控制单元和温度控制单元可以同时精确调控环境条件,从而测定光强、CO2浓度和温度对植物光合系统的影响。本仪器可在高湿度、多尘等恶劣环境中使用,具有广泛的适用性。

clip_image001.jpg

上图左为全套光合仪主机配件及便携箱等,上图中为光合仪主机和手柄,上图右为操作人员进行野外实验

应用领域

l 植物光合生理研究

l 植物抗胁迫研究

l 碳源碳汇研究

l 植物对气候变化的相应及其机理

l 作物新品种筛选

技术特点

l 配备手持式叶绿素荧光仪,内置了所有通用叶绿素荧光分析实验程序,包括两套荧光淬灭分析程序、3套光响应曲线程序、OJIP-test等

l

clip_image002.png

彩色LCD触摸屏,屏幕和控制单元均采用膜封技术,可在高湿和多尘环境下使用

l 白光和RGB(Red Gree Blue)光源任选其一

l 内置GPS模块,精确获取经纬度及海拔数据

l *自动、独立控制环境参数(空气湿度,CO2浓度,温度,光照强度)

l 精确测量CO2和水汽数据

l便携式设计,体积轻小,仅重4.1Kg

l 人体工程学设计,舒适型肩带,携带操作简便

l 手柄内置微型IRGA,有效缩短CO2测量时间

l 可在恶劣环境下操作,坚固耐用

l 可方便互换不同种类的叶室、叶夹

l 叶室材料精心选择,确保CO2及水分测量精度

l 数据存储量大,使用即插即拔SD卡

l 维护方便,叶室所有区域都很容易清洁

l 采用低能耗技术,野外单电池持续工作时间长,可达16小时

l 实时图形显示功能

clip_image004.jpg

上图为英国剑桥大学植物科学系M. Davey博士在南极洲对藻类光合作用研究时的工作图片,因LC系列光合仪轻便小巧,坚固耐用,续航持久等特点被列为。

技术指标

l 测量参数:光合速率、蒸腾速率、胞间CO2浓度、气孔导度、叶片温度、叶室温度、光合有效辐射、气压、GPS数据等,可进行光响应曲线和CO2响应曲线测量。

l 手持叶绿素荧光仪(选配)

1. 测量参数包括F0、Ft、Fm、Fm’、QY_Ln、QY_Dn、NPQ、Qp、Rfd、RAR、Area、M0、Sm、PI、ABS/RC等50多个叶绿素荧光参数,及3种给光程序的光响应曲线、2种荧光淬灭曲线、OJIP曲线等

2. 高时间分辨率,可达10万次每秒,自动绘出OJIP曲线并给出26个OJIP-test测量参数包括F0、Fj、Fi、Fm、Fv、Vj、Vi、Fm/F0、Fv/F0、Fv/Fm、M0、Area、Fix Area、Sm、Ss、N、Phi_P0、Psi_0、Phi_E0、Phi-D0、Phi_Pav、PI_Abs、ABS/RC、TR0/RC、ET0/RC、DI0/RC等

l CO2测量范围:0-3000ppm

l CO2测量分辨率:1ppm

l CO2采用红外分析,差分开路测量系统,自动置零,自动气压和温度补偿

l H2O测量范围:0-75mbar

l H2O测量分辨率:0.1mbar

l PAR测量范围:0-3000 μmol m-2 s-1,余弦校正

l 叶室温度:-5 - 50℃ 精度:±0.2℃

l 叶片温度:-5 - 50℃

l 空气泵流速:100 - 500ml / min

l CO2控制:由内部CO2供应系统提供,达2000ppm

l H2O控制:可高于或低于环境条件

l 温度控制:由微型peltier元件控制,环境温度-10℃到+15℃,所有叶室自动调节

l PAR控制:RGB光源*2400μmol m-2 s-1,LED白色光源*2500μmol m-2 s-1

l 可选配多种带有光源的可控温叶室、叶夹

1. 宽叶叶室:长×宽为2.5×2.5cm,适用于阔叶及大多数叶片类型

2. 窄叶叶室:长×宽为5.8×1cm,适用宽度小于1cm的条形叶

3. 针叶叶室:长约69mm,直径47mm,适用于簇状针叶(白光光源)

4. 小型叶叶室:叶室直径为16.5mm,测量面积2.16cm2

5. 土壤呼吸/小型植物室:测量测量土壤呼吸,或者高度低于55mm的整株草本植物光合作用,底面直径为11cm

6. 多功能测量室:长×宽×高为15×15×7cm,分为上下两部分,上部测量小型植物光合作用,下部分测量土壤呼吸

7. 果实测量室:上下两部分组成,上部透明,下部为金属,可测量果实*直径为11cm,*高度为10.5cm

8. 冠层测量室:底面直径12.7cm,高12.2cm,适用于地表冠层

9. 荧光仪联用适配器:适用于连接多种叶绿素荧光仪

clip_image005.jpg

上图从左到右依次为宽叶室、窄叶室、LED光源、荧光仪联用叶室、小型叶室

clip_image006.jpg

上图从左到右依次为针叶室、果实测量室、土壤呼吸室、多功能测量室、冠层室

l 显示:彩色WQVGA LCD触摸屏,480 x 272像素,尺寸95 x 53.9 mm,对角线长109mm

l 数据存储:SD卡,*兼容32G容量

l 数据输出:Mini-B型USB接口,RS232九针D型接口,*230400波特率PC通讯

l 供电系统:内置12V 7.5AH锂离子电池,可持续工作至16小时,智能充电器

l 尺寸:主机230×110×170mm,测量手柄300×80×75mm

l 重量:主机4.1Kg,测量手柄0.8Kg

l 操作环境:5到45℃

典型应用一

Glyphosate reduces shoot concentrations of mineral nutrients in glyphosate-resistant soybeans, Zobiole L. et al. 2010, Plant and Soil, 328(1): 57-69

clip_image007.png

本研究对不同类型的抗草甘膦大豆进行草甘膦处理,发现大豆的各项光合参数,包括叶绿素含量、气孔导度、光合速率和蒸腾速率都有所降低。

典型应用二

Methanol as a signal triggering isoprenoid emissions and photosynthetic performance in Quercus ilex, Seco R. et al. 2011, Acta Physiologiae Plantarum, 33(6): 2413-2422

clip_image008.jpg

上图左为本研究设计的气室装置,用以研究常青栎(Quercus ilex)在剪去部分叶片(模拟啃食)和加入甲醇(模拟附近其他植物被啃食时释放的信号)时的生理变化,上图右表明两种处理都提高了植物的净光合速率。

产地

英国

选配技术方案

1) 与叶绿素荧光仪组成光合作用与叶绿素荧光测量系统

2) 与FluorCam联用组成光合作用与叶绿素荧光成像测量系统

3) 可选配高光谱成像实现从单叶片到复合冠层的光合作用时空变化研究

4) 可选配O2测量单元

5) 可选配红外热成像单元以分析气孔导度动态

6) 可选配PSI智能LED光源

7) 可选配FluorPen、SpectraPen、PlantPen等手持式植物(叶片)测量仪器,全面分析植物叶片生理生态

8) 可选配ECODRONE®无人机平台搭载高光谱和红外热成像传感器进行时空格局调查研究

参考文献(仅列出部分代表性文献)

1. Al Kharusi L., Assaha D.V.M, Al-Yahyai R. and Yaish W.M. (2017). Screening of Date Palm (PhoenixdactyliferaL.) C*rs for Salinity Tolerance. Forests 2017,8, 136; doi:10.3390/f8040136.

2. Alsanius, B.W., Bergstrand, K-J., Hartmann, R., Gharaie, S., Wohanka, W., Dorais, M., Rosberg, A.K. (2017). Ornamental flowers in new light: Artificial lighting shapes the microbial phyllosphere community structure of greenhouse grown sunflowers (Helianthus annuus L.) Scientia Horticulturae, Volume 216, Pages 234–247.

3. Alvarado-Sanabria,O., Garcés-Varón, G. and Restrepo-Díaz, H. (2017). Physiological Response of Rice Seedlings (Oryza sativa L.) Subjected to Different Periods of Two Night Temperatures. Journal of Stress Physiology & Biochemistry, Vol. 13, , 2017, pp. 35-43. ISSN 1997-0838.

4. Barros, R.E., Fari R.M., Tuffi Santos L.D., Azevedo A.M., Governici J.L. (2017). Physiological Response of Maize and Weeds in Coexistence. Plants Daninha 2017; v35: e017158134.

5. Berenguer, H.D.P., Alves, A., Amaral, J. et al. (2017). Differential physiological performance of two Eucalyptus species and one hybrid under different imposed water availability scenarios. Trees https://doi.org/10.1007/s00468-017-1639-y.

6. Borja, D., Gonzalez-Gonzalez Nerea Oliveira Isabel Gonzalez Isabel Canellas Hortensia Sixto (2017). Poplar biomass production in short rotation under irrigation: A case study in the Mediterranean. Biomass and Bioenergy, 107, Dec 2017, 198-206.

7. WF Dutra, YL Guerra, JPC Ramos, PD Fernandes 2018. Introgression of wild alleles into the tetraploid peanut crop to improve water use efficiency, earliness and yield (2018)- journals.plos.org

8. Can Bradyrhizobium strains inoculation reduce water deficit effects on peanuts? (2018). DD Barbosa, SL Brito, PD Fernandes” – World Journal of”, 2018 ØC Springer

9. EG de Sousa, TI da Silva, TJ Dias, DV Ribeiro (2018). Biological Fertilization as an Attenuation of Salinity Water on Beetroot (Beta vulgaris) (2018)- Journal of Agricultural, 2018 – ccsenet.org

10. TC Alves, JPAR da Cunha, EM Lemes (2018). Physiological changes in sugarcane in function of air and ground application of fungicide for orange rust control. 2018- Bioscience Journal – seer.ufu.br

11. FRM Abreu, B Dedicova, RP Vianello, AC Lanna (2018). Overexpression of a phospholipase (OsPLD¦Į1) for drought tolerance in upland rice (Oryza sativa L.) (2018) Protoplasma, 2018 ØC Springer

12. B Correia, RD Hancock, J Amaral (2018). Combined drought and heat activates protective responses in Eucalyptus globulus that are not activated when subjected to drought or heat stress alone(2018) Frontiers in plant ”, 2018 – frontiersin.org

13. C Ma, H Hu, L Jia, C Zhang, F Li (2018). Effects of Brackish Water Salinity on the Soil Salt and Water Movements and the Cotton Seedling Growth Under Film Hole Irrigation. 2018 Sustainable Development of Water”, ØC Springer

14. P Zou, X Lu, C Jing, Y Yuan, Y Lu, C Zhang (2018). Low-Molecular-Weightt Polysaccharides From Pyropia yezoensis Enhance Tolerance of Wheat Seedlings (Triticum aestivum L.) to Salt Stress (2018 Frontiers in plant”, 2018 – frontiersin.org

15. MEB Brito, LAA Soares, WS Soares Filho (2018). Emergence and morphophysiology of Sunki mandarin and other citrus genotypes seedlings under saline stress (2018)- Spanish Journal 2018 – revistas.inia.es

16. LAA Soares, PD Fernandes, GS Lima (2018). Gas exchanges and production of coloured cotton irrigated with saline water at different phenological stages (2018)- Revista CiØŗncia, 2018 SciELO Brasil

17. X Zhang, Y Fan, Y Jia, N Cui, L Zhao (2018). Effect of water deficit on photosynthetic characteristics, yield and water use efficiency in Shiranui citrus under drip irrigation (2018- Transactions of the, 2018 –

18. JES Ribeiro, AJS Barbosa, SF Lopes (2018). Seasonal variation in gas exchange by plants of Erythroxylum simonis Plowman (2018)- Acta Botanica”, 2018 – SciELO Brasil

19. TB de Oliveira, L de Azevedo Peixoto, PE Teodoro (2018). The number of measurements needed to obtain high reliability for traits related to enzymatic activities and photosynthetic compounds in soybean plants (2018)- PloS one, 2018 – journals.plos.org

20. A Muthalagu, SJ Ankegowda, MF Peeran (2018). Effect of Natural Growth Enhancer on Growth, Physiological and Biochemical Attributes in Black Pepper (Piper nigrum L.) (2018)-

21. W Zhang, XX Chen, YM Liu, DY Liu, YF Du (2018). The role of phosphorus supply in maximizing the leaf area, photosynthetic rate, coordinated to grain yield of summer maize (2018)- Field Crops ”, 2018 ØC Elsevier

22. Carla Barradas, Glória Pinto, Barbara Correia, Cláudia Jesus, Artur Alves. (2019). Impact of Botryosphaeria, Diplodia and Neofusicoccum species on two Eucalyptus species and a hybrid: From pathogenicity to physiological performance. https://doi.org/10.1111/efp.12493

23. Valéria F. de O. Sousa, Caciana C. Costa, Genilson L. Diniz, João B. dos Santos, Marinês P. Bomfim, Kilson P. Lopes. (2019). Growth and gas changes of melon seedlings submitted to water salinity. /10.1590/1807-1929/agriambi.v23n2p90-96

24. T.Chatzistathis, I.E.Papadakis, A.Papaioannou, O.Dichala, A.Giannakoula S.Kostas, P.Tziachris (2019). Genotypic tolerance of two Punica granatum L. c*rs (‘Wonderful’ and ‘Acco’) to serpentine stress. https://doi.org/10.1016/j.scienta.2018.12.027

25. Cícero F. de Sousa Alvarenga, Evandro M. da Silva, Reginaldo G. Nobre, Hans R. Gheyi, Geovani S. de Lima, Luderlândio de A. Silva. (2019). Morfofisiologia de aceroleira irrigada com águas salinas sob combinações de doses de nitrogênio e potássio. https://doi.org/10.19084/RCA18215


上一篇:实验室超纯水机应该如何保养? 下一篇:QG-300D金相试样切割机使用说明
热线电话 在线询价
提示

仪表网采购电话