初级会员第 8 年生产厂家
参考价:
起订量:
具体成交价以合同协议为准
初级会员第 8 年生产厂家
:产品概论
1.2 HDJF-A手持式局部放电检测仪(多功能超声波检测分析仪)(电缆局放定点仪)提供了既快速又简单的对开关柜,变压器,高压电缆的方法, 用于识别可能会引起停电或人员伤害的潜在绝缘故障。
局部放电会以下述的方式放射能量:
电磁能量:无线电波、光、热
声能:声波、超声波
气体:臭氧、氮氧化物。
HDJF-A手持式局部放电检测仪(多功能超声波检测分析仪)(电缆局放精确定点仪)实用的技术都是基于检测电磁频谱中的高频部分以及超声波信号。是于检测电磁波及超声波活动的仪器。
2.2 空气传播的超声波放电活动
局部放电活动中的声波辐射会出现在整个声谱范围中。 听声音是可能的,但是要取决于各人的听觉能力。
使用仪器来检测声谱中的超声波具有几个优点。 仪器比人耳更敏感,与操作员无关,且工作在音频以上的频率,并且具有更强的方向性。
敏感的检测方法是使用中心频率为40 ~200kHz 的超声波传感器。 该方法可以非常成功地检测局部放电活动。
2.3 空气传播的超声波放电活动
当局部放电活动出现在高压开关柜绝缘层中时, 它会产生高频电磁波, 它只可以通过金属外壳上的开孔从开关柜内泄漏到外表面。这些开孔可以是外壳缝隙或密封垫圈及其它绝缘部件周围的间隙。
当电磁波传播到开关柜外面时, 它会在接地的金属外壳上产生瞬态电压。瞬态地电压( TEV) 在几个毫伏至几伏的范围内,存在时间很短,具有几个纳秒的上升时间。
可采用非侵入方式将探头放在开关柜的外面来检测局部放电活动。
二、技术参数
1、适用范围:采用非侵入式检测方式,对高压电气设备的局部放电缺陷进行检测及定位。
2、检测原理:特高频法(UHF)、超声波法(UA)及地电波法(TEV)。
3、检测频带:特高频为300~1500(MHz),超声波为20~200(KHz)。
4、测量范围:特高频为 -80~-20dBm,超声波为 0~90dB。
5、灵敏度:小10pC(具体取决于传感器与放电源之间的距离)。
6、传感器:
① 特高频传感器:300~2000(MHz),具备定向接收特性;
② 超声波传感器:20~200(kHz);
③ 地电波:10 ~ 70MHz。
7、HDJF-A手持式局部放电检测仪(多功能超声波检测分析仪)(电缆局放精确定点仪)具有内置超声传感器,地电波、超声波二合一传感器;
8、软件功能:
① 连续检测特高频、地电波及超声波信号,判断是否存在局部放电;
② 实时显示被测信号的变化趋势、可对局部放电信号的发展作出较为直观的判断;
③ 具备数据的现场存储功能。
9、仪器特征:
① 屏幕显示:高对比度 3.5 英寸TFT彩屏。
② 数据存储:可保存 1000 组测试数据。
③ 工作电源:内置 8.4V 锂电池,可连续工作 8 小时。
④ 电源:输入100-240VAC,输出8.4V/3A,充电时间3~4小时。
⑤ 外形尺寸:220 * 100 * 40。
⑥ 仪器重量:1.5kg。
⑦ 环境温度:-20℃~45℃。
⑧ 存储温度:-25℃~60℃。
10、成套配置:主机、传感器、交流适配器、连接电缆及运输箱。
三、结构特点
HDJF-A手持式局部放电检测仪采用便携式结构,内含信号接收及数据处理模块,具备多种分析模式,可方便地对电气设备局部放电所产生的特高频信号及超声波信号进行测量。与同类产品相比具有操作便捷,功能强大的特点。
传感器名称 | 用途 |
超声波、TEV二合一传感器(标配) | 用于开关柜的超声波、地电波测试 |
变压器超声波传感器(选配) | 用于变压器内部的局放测试 |
特高频传感器(选配) | 用来测量GIS的内部局部放电 |
电缆传感器(选配) | 用于高压电缆的局放测试,可伸缩并与高压隔离
|
更多产品咨询请访问武汉华顶电力设备有限公
对某110kV电缆线路进行时发现其变电站内部分存在局部放电信号,精确定位结果显示局部放电缺陷位于该电缆线路B相GIS终端电缆仓内。随后,对B相电缆仓进行开仓检查并更换电缆终端,更换后异常信号消失。对更换下来的GIS终端进行X光检测和解体发现在环氧套管地电位金属内衬件端部存在3.9mm不规则气腔,验证了局部放电检测的有效性。
(二)检测分析方法许昌市手持式局部放电检测仪选型
采用高频局部放电检测仪器对上述110kV电缆终端接地箱进行检测,检测图谱如图5-11所示。由检测图谱可知,在三相电缆接地箱处均能检测到明显的局部放电信号,其中,B相幅值大,达到200mV左右;A、C相幅值较小均在80mV左右。且在同一同步信号下,A、C相放电信号与B相信号极性相反,表明局部放电信号穿过B相传感器的方向与穿过其他两相传感器的方向相反,即局部放电信号沿着B相电缆终端接地线传播,再经同一接地排传播至其他两相的接地线,因此确定局部放电源位于B相GIS电缆终端。同时,采用特高频传感器和高速示波器对上述局部放电源位置进行了确认。
(a)A相检测图谱(b)B相检测图谱(c)C相检测图谱
图5-11 110kV电缆终端接地箱处高频局部放电检测图谱
采用GE数字化放射摄影系统(CT)对该环氧套管进行X光扫描,扫描结果如图5-12所示,由图可见,在该GIS终端套管底部内衬件端部存在3.9mm不规则气隙,解体切割后的气隙如图5-13所示。
图5-12环氧套管CT扫描重建横向与纵向断面图
许昌市手持式局部放电检测仪选型
图5-13解体切割后的气隙
(三)经验体会
(1)该案例表明高频局部放电检测不仅能发现电缆中间接头的局部放电缺陷,通过在电缆终端接地箱处进行检测,还能有效发现电缆终端甚至GIS仓体内部的局部放电缺陷。
(2)通过对三相高频检测图谱中时域脉冲的极性和幅值分析,可以很容易的辨别出缺陷的相别。
(3)对缺陷设备进行的X光检测和解体分析验证了高频带电检测的有效性,对于该项技术的推广应用具有重要意