【
仪表网 仪表下游】据外媒报道,鉴于鱼类天生善于游泳,在设计水下机器人时,人们越来越多地模仿鱼类的身体结构。科学家们现在发现,通过调整它们尾巴的刚度,这些机器人可以更有效地游泳。
在真正的鱼中,尾部肌肉可以变硬以达到最佳的高速冲刺,或者松开以达到更好的低速巡航和机动性。然而,受鱼启发的机器人必须“做出妥协”--它们的尾巴被设定为一种硬度,而这种硬度在所有情况下都不理想。
为了对他们的理论进行实际测试,科学家们建造了一个被称为AutoTuna的机器人金枪鱼。基于尾巴刚度模型,该设备利用一个可编程的肌腱来自动改变其尾巴的刚度,因为它在一个基于实验室的水渠中游泳。值得注意的是,与其他相同的固定尾部刚度的机器人相比,它可以在更大的速度范围内游泳,而使用的能量几乎是一半。
研究人员现在正在研究如何将该技术应用于基于其他类型游泳动物的机器人。
Quinn表示:“像我们这样的刚度调整机制可以非常容易地被小型化,因此它们可以支持各种尺寸和形状的机器人。更难的部分是要弄清楚机器人在各种游泳频率和速度下应该有多大的硬度。我们使用了一个物理模型和水渠测试,为我们的机器人制定了一个控制法则,以便它在自动调整其尾部硬度时使用。如果你把机器人做得更大(例如像海豚一样的机器人)或切换到不同的游泳类型(例如像黄貂鱼一样的机器人),这个模型将需要重新校准,但这是完全可以做到的。”
水下机器人也称无人遥控潜水器,是一种工作于水下的极限作业机器人。水下环境恶劣危险,人的潜水深度有限,所以水下机器人已成为开发海洋的重要工具。无人遥控潜水器主要有:有缆遥控潜水器和无缆遥控潜水器两种,其中有缆遥控潜水器又分为水中自航式、拖航式和能在海底结构物上爬行式三种。
水下机器人的优缺点
优点
水下机器人可在高度危险环境、被污染环境以及零可见度的水域代替人工在水下长时间作业,水下机器人上一般配备声呐系统、摄像机、照明灯和机械臂等装置,能提供实时视频、声呐图像,机械臂能抓起重物,水下机器人在石油开发、海事执法取证、科学研究和军事等领域得到广泛应用。 [14]
缺点
由于水下机器人运行的环境复杂,水声信号的噪声大,而各种水声
传感器普遍存在精度较差、跳变频繁的缺点,因此水下机器人
运动控制系统中,滤波技术显得极为重要。水下机器人运动控制中普遍采用的位置传感器为短基线或长基线水声定位系统,速度传感器为多普勒速度计会影响水声定位系统精度。因素主要包括声速误差、应答器响应时间的丈量误差、应答器位置即间距的校正误差。而影响多普勒速度计精度的因素主要包括声速c、海水中的介质物理化学特性、运载器的颠簸等。
全部评论