资讯中心

AI落地遥遥无期 原来是这些问题“拖后腿”

2021/8/9 11:15:49    16167
来源:安防展览网整理
摘要:从AI的市场需求和政策支持来看,落地应该是非常轻松简单的,可实际上却事与愿违,现实是AI很火但是落地却很难。
  【仪表网 仪表下游】导读:从AI的市场需求和政策支持来看,落地应该是非常轻松简单的,可实际上却事与愿违,现实是AI很火但是落地却很难。是什么原因导致AI无法自然融入这个社会,只能成为华而不实的幻影?
 
  从政策来看,国务院印发的《新一代人工智能发展规划》,计划到2025年,人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平,人工智能成为我国产业升级和经济转型的主要动力,智能社会建设取得积极进展;到2030年,人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。
 
  从应用来看,人工智能(AI)技术在工业现代化的浪潮下向各个领域渗透,包括市政、交通、医疗、商用等,随着5G商用的春风,如今AI技术更火了。
 
  从数据来看,2020年中国人工智能产业规模超过1500亿元,带动相关产业规模超过1万亿元。然而AI企业在资本市场并不太顺利,在探索技术与产品、应用与商业方面存在着各种各样的问题。
 
  人工智能行业历经多年快速发展,逐步进入一个瓶颈期。一个很重要的影响因素就是AI落地难。那么,到底是什么阻碍了AI落地?
 
  场景限制
 
  碎片化太严重是AI应用落地的一大瓶颈。AI并不是万能的,在使用上经常受限于场景,随着用户对AI应用的诉求变得越来越个性化和碎片化,企业所提供的产品和解决方案也呈现碎片化,然而场景多样化的脚步并未追上AI算力的增长,溢出的算力需要更多的场景来释放其能力。
 
  数据制约
 
  数据也是制约AI成功落地的一大因素。由于AI依赖数据训练基础算法,因而获得有意义的高质量数据,对于AI落地成功至关重要。如果缺少统一、标准化、高质量的数据,AI应用可能就是无米之炊、无源之水。
 
  人才短缺
 
  AI不只是一个技术、工具,更是一种思维方式,在AI落地过程中,储备真正懂得AI思维、AI语言的人才,显得尤为重要。实施AI项目通常需要数据科学家、ML工程师、软件架构师、BI分析师等相关人员组成团队,但是这些有经验的专业人员很难聘请,这种状态进一步导致了AI的落地难。
 
  成本高昂
 
  企业用户的核心目标是利用人工智能技术实现业务增长,只有将AI技术应用到现实世界里,才能为企业创造利润价值。然而,在深入产业落地的过程中,落地成本太高的问题被暴露出来,而这些也成为当前阶段AI落地应用过程中新的痛点。
 
  总结
 
  AI如何落地一直是行业热议的话题。我们看到近两年,在疫情、物联网、5G、智能化等因素的影响下AI的应用需求更加明晰。应用场景、资源与基础设施、算法和模型、智能设备、数据构成了AI技术落地的五大要素。如何将这五大要素在落地场景中实现协调,是AI技术在产业界落地的另一个关键点。
 
  虽然AI离实际落地还有很长一段路要走,但是从长远来看,AI还有很大的进步空间,市场前景广阔,是发展潜力无限的朝阳产业。

全部评论

上一篇:“课后服务”即将上线 智慧课堂优势尽显

下一篇:智能机器人种类多 各司其职为人类服务

相关新闻
热门视频
相关产品
写评论...