资讯中心

集成光子芯片高效光子频率转换 在各个领域都有广泛应用

2021/4/15 10:19:49    29659
来源:仪表网
摘要:中国科技大学郭光灿院士团队、邹长铃研究组,在集成光子芯片上实现了基于微腔简并模式的高效光子频率转换,并进一步探究了微腔内的级联非线性光学效应,实现跨波段的频率转换和放大。
  【仪表网 仪表产业】中国科技大学郭光灿院士团队、邹长铃研究组,在集成光子芯片上实现了基于微腔简并模式的高效光子频率转换,并进一步探究了微腔内的级联非线性光学效应,实现跨波段的频率转换和放大。
 
  相干光学频率转换在经典和量子信息领域都有广泛的应用,如通信、探测、传感、成像,同时也是连接光纤通信波段和各种原子的跃迁波段的工具,对分布式量子计算和量子网络而言更是不可或缺的接口,是实现高效率光学频率转换和其他非线性光学效应的重要平台。然而,在芯片上实现腔增强的频率转换过程,需要满足3个或更多光学模式的相位匹配,这对于器件的设计、加工和调控提出了非常苛刻的要求。特别是在针对原子分子光谱相关的应用中,集成光子芯片的微纳加工工艺带来的误差使得微腔的共振频率与原子的跃迁线几乎不可能实现匹配。
 
  光子芯片是什么?
 
  研究人员将磷化铟的发光属性和硅的光路由能力整合到单一混合芯片中。当给磷化铟施加电压的时候,光进入硅片的波导,产生持续的激光束,这种激光束可驱动其他的硅光子器件。这种基于硅片的激光技术可使光子学更广泛地应用于计算机中,因为采用大规模硅基制造技术能够大幅度降低成本。 英特尔认为,尽管该技术离商品化仍有很长距离,但相信未来数十个、甚至数百个混合硅激光器会和其它硅光子学部件一起,被集成到单一硅基芯片上去。这是开始低成本大批量生产高集成度硅光子芯片的标志。
 
  光子集成技术是光纤通信前沿、有前途的领域,它是满足未来网络带宽需求的好办法。当大家还在固守着“全光通信”的思路的时候,网络已在悄然改变。节点设备需要光电变换,通过“O-E-O”才能 将信号进行整形和放大,从而传给计算机。光子集成技术顺应了时代发展,光子集成比传统的分立“O-E-O”处理降低了成本和复杂性,带来的好处是以更低的成本构建一个具有更多节点的全新的网络结构,更多的节点意味着更灵活的接入,更有效的维护和故障处理。然而光子集成芯片的制造并不是一件容易的事情。光子器件具有三维结构,比二维结构的半导体集成要复杂得多。将激光器、检测器、调制器和其他器件都集成到芯片中,这些集成需要在不同材料(包括砷化铟镓、磷化铟等材料)多个薄膜介质层上重复地沉积和蚀刻。磷化铟晶片在生产线上经过一种称为光刻胶的浆状化学物质进行包裹。紫外线光通过一个镂空设计的模板照射到光刻胶上,产生了复杂的反应,其中一些半导体材料就粘在了晶片上,一些就被蚀刻掉了。
 
  集成芯片又是什么?
 
  集成芯片是现代数字集成芯片主要使用CMOS工艺制造的。CMOS器件的静态功耗很低,但是在高速开关的情况下,CMOS器件需要电源提供瞬时功率,高速CMOS器件的动态功率要求超过同类双极性器件。因此必须对这些器件加去耦电容以满足瞬时功率要求。
 
  现代集成芯片有多种封装结构,对于分立元件,引脚越短,EMI问题越小。因为表贴器件有更小的安装面积和更低的安装位置,因此有更好的EMC性能,所以应选表贴元件,甚至直接在PCB上安装裸片。
 
  光集成芯片的市场应用
 
  1、光纤到户接入网方面的应用。中国是最大,发展快的电信市场之一,已建立了具有水平的光传输网络,包括10Gbps光同步数字系统(SDH)、密集波分复用系统(DWDM)、及有线电视网络(CATV)。 “三网合一”的光纤到户 (FTTH) 网络系统也开始试点推广。光纤到户网具有无源网络、高带宽、承载业务种类多以及支持协议灵活四大技术优势,将全面淘汰ADSL。光纤到户融合IP、光通信、数字、接入网等先进技术,其高带宽的接入方式可为交互式网络电视(IPTV)、视频点播、数字电视等新型业务的普及提供高质保证。迄今,互联网信息的传输是依靠光纤在城市之间和城市内部沿骨干网传输,从骨干网到小区和家庭的“最后一公里”和“最后一百米”,则用铜线而非光纤传输。铜线带宽仅有1兆到2兆左右,而光纤的带宽可达100兆之上。一旦实现光纤到户,三网合一,人类的工作与生活将有难以想象的巨变。上网速度是迄今的上百倍,上网、看电影、上课、开会、下载都可以实现高清晰、高速度的即时传输。通信可实现视频通话、音画高清晰、零干扰等。有线电视网也可实现高清晰画面以及视频点播等交互功能。
 
  光纤到户技术和市场日趋成熟,业务增长迅速,在发达国家尤受重视。所以,这是一个巨大的市场,我们国家也将形成1000亿元左右的光纤光缆及光接入设备市场规模,不含海外市场。每年通信运营业务收入将超过180亿元,对电信企业和光纤设备商而言,无疑具开拓潜力。
 
  2、超长距离城际网主干道方面的应用。长距离干线传输的全光通信广域网逐步向着超长距、高速率、大容量、模块化、灵活、方便、可靠的方向发展。综合波分复用(WDM)和遥泵(ROPA)技术,能够实现10G信号5000公里无电中继传送。我公司针对新一代的全光通信网开发的40信道阵列波导型(AWG)密集波分复用器(DWDM)和20信道可重构光分插复用器(ROADM)便是波分复用系统的核心元件,能够满足新一代长距离干线传输发展的要求。300-500公里超长单跨距传输提高了系统的长距传输能力,可以最大限度地节省中继站点,降低网络成本,提高网络的可靠性。密集波分复用器是模块化设计的基础,这样既能实现 400G>800G>1200G>1600G 系统逐步扩容,也能按波长进行平滑升级。有利于采用分期投资,按需建网的思路建设干线传输网络。 可重构光分插复用器(ROADM),可以实现远程自动配置,任意波长可在任意节点上、下。设备在线升级、容量扩展,不中断业务。ROADM同时实现通道的自动功率调谐和监视。采用ROADM系统无需重新设计网络就可以快速提供新业务,减轻网络规划负担,减少了运营和维护的成本。光芯片级的平面阵列波导光珊型密集波分复用器和光芯片级多信道可调光衰减器是2款主要光芯片,目前国内尚没有自己生产的该类光芯片,几乎全部靠进口。
 
  3、环形城域网方面的应用。环形网一般采用双环结构,各节点串接于光纤环中,节点间信号的传送是点对点接力式的, 因此网径和容量都可做得很大,网的周长可超过200km,串接节点数达上千个,比大多数总线网大一个数量级,且光路损耗也小。双环网可以单环运行,亦可双环运行。单环运行时,一个环正常运行,另一个环处于热备状态提高系统的可靠性,此时网的容量取决于一个环,节点中也只要一套设备。双环运行时,网的容量加倍,需二套设备同时运行。ROADM被认为是新一代城域波分网络的标志,而动态灵活的光层,也被认为是城域网的发展方向。
 
  4、电气控制高频信号传输方面的应用。我国正处于高速发展的过程中,工业生产中自动化程度越来越高,资源和原材料都十分紧缺或价格暴涨都严重制约了的发展,每年除了用于网线、有线电视线等以外,大量的控制设备中都要使用以金属材料为核心的数据线、控制线、信号线等。因此铜等金属资源的消耗是巨大的,这些从技术上讲完全可以用光纤和光芯片来替代。简单说,一根光纤两端用光芯片和光电转换的形式来实现。大量仪器设备中用于控制的传输线和各种类型的信号线,使得一些电气控制柜,自动化控制台等一经打开,都是成捆的各种传输线、信号线,甚至都要占据控制柜的一小半重量。如果都采用廉价的光纤来传输,那么我们研制的配套光芯片又将是海量的应用。这个方面很符合国家的“铜退光进”的战略和产业政策。特别是一些自动化控制领域中的高频信号,迄今往往使用的同轴电缆,原因很简单,只要是电线都有电磁场,都会互相干扰,必须要在电线外包上屏蔽层等技术手段,但是依然不能解决损耗大的问题。
 
  资料来源:百科、科技日报

全部评论

上一篇:未来包衣机在制药领域,将发挥越来越重要的作用

下一篇:安装电表500万只 国家电网完成沙特智能电表项目

相关新闻
热门视频
相关产品
写评论...