【
仪表网 仪表研发】一氧化氮(nitric oxide, NO)是一种高度保守的信号分子,参与调控众多生物学过程。NO通过对靶蛋白特异半胱氨酸残基进行S-亚硝基化修饰(S-nitrosylation)是其发挥生物学功能的主要方式之一。与其它蛋白质翻译后修饰不同,亚硝基化修饰曾被认为是一个非酶促反应,其特异性主要决定于NO的局部浓度和靶蛋白的结构。近年来的研究发现S-亚硝基化修饰选择性(selectivity)的一种新机制,即一类蛋白可以将其携带的NO基团传递至另一个蛋白,导致后者的亚硝基化修饰,这一过程被称为转亚硝基化修饰(transnitrosylation),而介导转亚硝基化的蛋白被称为转亚硝基化酶(transnitrosylase)。目前,在动物和大肠杆菌已经发现了数个结构迥异的转亚硝基化酶。在植物中,尚未发现转亚硝基化酶。
中国科学院遗传与发育生物学研究所植物基因组学国家重点实验室左建儒研究组与合作者近发现了植物特异的转亚硝基化酶。NO的主要生物学活性形式是亚硝基谷胱甘肽(S-nitrosoglutathione, GSNO),可被高度保守的GSNO还原酶(GSNO reductase, GSNOR)不可逆分解。因此,GSNOR是调控NO动态平衡的主控因子,不同物种中gsnor突变导致NO水平升高以及各种严重的缺陷。通过遗传筛选,研究团队获得了拟南芥gsnor1突变体的抑制子突变rog1(repressor of gsnor1)。除抑制gsnor1突变体的表型外,rog1突变体对NO的敏感性显著降低,表明ROG1是调控NO信号通路的一个重要组分。分子遗传学和生物化学研究发现ROG1编码一个转亚硝基化酶,其底物之一为GSNOR1本身。ROG1介导GSNOR1的亚硝基化修饰导致其通过自噬途径被降解,从而形成一个正反馈环调控NO信号通路。
令人吃惊的是ROG1即为过氧化氢酶CAT3 (catalase 3)。ROG1转亚硝基化酶仅具有很低的过氧化氢酶活性;与之相反,其同源蛋白CAT2具有很高的过氧化氢酶活性但很低的转亚硝基化酶活性。决定ROG1与CAT2酶活特异性的一个主要因素是其各自特异的Cys-343残基和Thr-343残基。将ROG1的Cys-343替换为Thr后,其转亚硝基化酶活性显著降低,而过氧化氢酶活性升高;反之,将CAT2中的Thr-343替换为Cys后,其转亚硝基化酶活性升高,而过氧化氢酶活性降低。对水稻ROG1-like蛋白 (OsCATA)和CAT2-like蛋白(OsCATC)的特异性酶活分析得出相似结论,表明这是植物中一种高度保守的机制。该研究发现了调控植物特异选择性S-亚硝基化修饰的新机制。
上述研究由左建儒研究组与周俭民研究组、李家洋研究组、河南大学宋纯鹏研究组合作完成。相关结果于4月23日在Developmental Cell在线发表(DOI:10.1016/j.devcel.2020.03.020)。左建儒研究组博士后陈立超为论文的第一作者,左建儒为通讯作者。该项研究得到国家自然科学基金委、中科院、植物基因组学国家重点实验室的资助。
全部评论