【
仪表网 仪表研发】在加速能源使用形式由化石能源向清洁能源转变的战略背景下,锂离子电池(LIB)凭借其高能量密度、高功率、长循环寿命、较高的工作电压、放电平稳、宽工作温度范围、无记忆效应和安全性能较好等综合优势,在实现环保而高效的能量存储及转化方式方面显得尤为重要。作为锂离子电池的重要组成部分,负极自身的性能直接影响着整个电池体系的性能。
锂离子电池以碳素材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,而负极用插入或脱插表示)。在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌和插入/脱插,被形象地称为“摇椅电池”。
当对电池进行充电时,电池的正极上有锂离子生成,生成的锂离子经过电解液运动到负极。而作为负极的碳呈层状结构,它有很多微孔,达到负极的锂离子就嵌入到碳层的微孔中,嵌入的锂离子越多,充电容量越高。同样,当对电池进行放电时(即我们使用电池的过程),嵌在负极碳层中的锂离子脱出,又运动回正极。回正极的锂离子越多,放电容量越高。
近年来,中国科学院山西煤炭化学研究所研究员宋燕及其带领的科研团队,通过对碳基及硅基负极材料进行结构设计,有效构筑了一系列电极材料,实现了材料比容量、循环稳定性和倍率性能的显著提升。基于商业负极材料石墨在结构以及容量方面的局限性,团队进行了多方尝试。以天然石墨鳞片以及沥青焦炭为原料,通过热压烧结的方式制备了石墨碳与多孔纳米碳共存的镍掺杂中空纳米碳负极材料。随后,团队以沥青为原料通过加压缩聚的方式制备了类石墨片层碳,此材料作为负极材料时不仅具备石墨的强稳定性,其容量值也得到了提升。针对硅基负极材料循环稳定性差的特性,团队利用静电作用在硅纳米颗粒表面吸附阳离子表面活性剂来实现核壳双层保护,减弱并限制硅膨胀时应力对材料结构造成的破坏。为进一步调控硅基双包覆结构的性能,采用硬模板法引入空腔来缓和硅的体积变化,实现提高容量以及循环稳定性双层目标。
石墨是原子晶体、金属晶体和分子晶体之间的一种过渡型晶体。在晶体中同层碳原子间以sp2杂化形成共价键,每个碳原子与另外三个碳原子相联,六个碳原子在同一平面上形成正六边形的环,伸展形成片层结构。在同一平面的碳原子还各剩下一个p轨道,它们互相重叠,形成离域的π键电子在晶格中能自由移动,可以被激发,所以石墨有金属光泽,能导电、传热。由于层与层间距离大,结合力(范德华力)小,各层可以滑动,所以石墨的密度比金刚石小,质软并有滑腻感。
鉴于石墨材料高稳定性以及硅高比容量的特性,制备了膨胀石墨与硅的复合电极,硅纳米颗粒与石墨片层之间形成典型的三明治结构,改善了材料的电子传导特性,其表现出较为良好的性能(Carbon,2014,72:38-46)。在此基础上,对膨胀石墨酸化并加入硅烷偶联剂,实现硅纳米颗粒在石墨片层之间的均匀分散,制备的复合电极片在0.4 A/g电流密度下循环450次后依然有接近800 mAh/g的比容量。
全部评论