【
仪表网 研发快讯】窄带InSb半导体材料以高电子迁移率、大朗德g因子和强大的Rashba自旋轨道耦合特征而著称,成为自旋电子学、红外探测、热电以及复合半导体-超导器件中的新型量子比特和拓扑量子比特的材料候选者。
由InSb制成的低维纳米结构如纳米线或2D InSb纳米结构(或量子阱),也因丰富的量子现象、优异的可调控性而颇具潜力。然而,InSb量子阱由于大晶格常数,较难在绝缘基板上外延生长。解决这些问题的方法之一是自下而上独立生长出无缺陷的纳米结构。通过气-液-固(VLS)生长出的2D InSb纳米片结构具有非常高的晶体质量,显示出单晶或接近单晶的优异特性,而在以往研究中其生长过程几乎均是起源于单个催化剂种子颗粒,因而位置、产量和方向几乎没有控制。
荷兰埃因霍温理工大学与中国科学院物理研究所/北京凝聚态物理国家研究中心HX-Q02组特聘研究员沈洁等合作,开发出通过金属有机气相外延(MOVPE)在预定位置以预设数量(频率)和固定取向/排列生长2D InSb纳米结构的新方法(可控生长),并利用低温电输运测量其制备而成的量子器件,观察到不同晶体结构对应的特征结构。
在这一方法中,通过在基底上制备V型槽切口,并精确控制成对从倾斜且相对的{111}B面生长的纳米线进行合并来形成纳米片。纳米片状形态和晶体结构由两根纳米线的相对取向决定。TEM等分析表明,存在与不同晶界排列相关的三种不同的纳米片形态——无晶界(I型)、Σ3-晶界(II型)、Σ9-晶界(III型)。后续的器件制备和输运测量表明,I型、II型在输运上表现出良好的性质,有较好的量子霍尔效应,出现了量子化平台,也有较高的场效应迁移率。
与之相对,III型纳米线因特殊晶界的存在,出现了明显的迁移率降低和较差的量子霍尔行为,且在偏压谱中被观察到象征势垒的零偏压电导谷。这归因于Σ9晶界带来的势垒对输运性质的影响。
研究表明,通过这种方法制备的I型和II型纳米片表现出有潜力的输运特性,适用于各种量子器件。尤其是这种生长方案使得InSb纳米线与InSb纳米片一起生长,具有预定的位置和方向,并可创建复杂的阴影几何形状与纳米线网络形状。
这一旦与超导体的定向沉积相结合,便可用最少的制备步骤产生高质量InSb超导体复合量子器件,为拓扑量子比特和新型复合量子比特提供器件平台。此外,与通过分子束外延(MBE)生长的InSb纳米片相比,采用这一方法生长的InSb纳米片更薄,更有助于量子化现象的出现和增加可调控性。
2月8日,相关研究成果以Merging Nanowires and Formation Dynamics of Bottom-Up Grown InSb Nanoflakes为题,在线发表在Advanced Functional Materials上。研究工作得到国家自然科学基金、中科院战略性先导科技专项、北京市科技新星计划和综合极端条件实验装置的支持。
图1.(a)InSb纳米线和纳米片基底的示意图。在InP(100)晶圆上制作v型槽切口(“沟槽”),暴露出(111)B面。金颗粒在InP(111)B切面预先确定的位置上进行曝光制备,InSb纳米线在其上生长。通过在相反的InP(111)B切面上沉积Au颗粒,InSb纳米线将合并,形成(e)纳米桥和(f)纳米片。
图2.三种类型的InSb纳米片的晶体取向与最终形貌的关系
图4.三种纳米片的低温电输运测量。(a-c)显示了两端电导作为背门电压Vbg和磁场B的函数,即朗道扇形图。插图中显示的是假彩色SEM图像。纳米薄片被Al电极(蓝色)接触,Σ3和Σ9晶界分别用黄色和红色虚线标记。(d-f)为(a-c)在4T、8T和11T处扇图的截线,显示量子化平台存在与否。(g-i)为三种类型纳米片低磁场下微分电导dI/dV与Vbias和Vbg的函数关系,可以看出(i)中存在与晶界对应的零偏压电导谷。(j)由三种不同类型的纳米片制成的8个器件的场效应迁移率,显示三类纳米线不同的迁移率。
全部评论