资讯中心

基于扫描电镜-拉曼联机系统的微细矿物快速识别与定量分析技术

2022/10/14 11:18:59    14284
来源:中科院地质地球所
摘要:中国科学院地质与地球物理研究所电子探针与扫描电镜实验室团队原江燕工程师、陈意研究员和苏文研究员等,基于2020年购置的扫描电镜-激光拉曼联机系统(RISE),开展了一系列技术研发工作。
  【仪表网 仪表研发】扫描电子显微镜(SEM,简称扫描电镜)是观测物质表面形貌的基础微束分析仪器,具有分辨率高、景深长、样品制备简单等特点,已成为地球和行星科学研究领域最常用的仪器之一。近年来,扫描电镜的空间分辨率已大幅度提升,分辨率优于1纳米,附属硬件的集成(如背散射电子探头、X 射线能谱仪、拉曼光谱等)和软件的开发极大地拓展了扫描电镜的功能,显著提高了人们认知矿物组成和微观结构的能力,促进了固体地球科学、行星科学等多个学科的发展。复杂样品的三维重构,微细复杂矿物的快速精准识别、定位以及定量分析,是扫描电镜分析技术的前沿发展方向。
 
  中国科学院地质与地球物理研究所电子探针与扫描电镜实验室团队原江燕工程师、陈意研究员和苏文研究员等,基于2020年购置的扫描电镜-激光拉曼联机系统(RISE),开展了一系列技术研发工作。该仪器可快速精准地实现扫描电镜与拉曼光谱仪之间的切换,采集样品同一微区的形貌、成分及三维结构信息(图1)。克服了传统扫描电镜对熔体包裹体、有机质和同质多像矿物识别的困难,并将拉曼光谱分析拓展至亚微米和纳米尺度。
 
  铌(Nb)是医疗、航空航天、冶金能源和国防军工等行业不可缺少的重要战略性金属资源。我国白云鄂博是超大型稀土-铌-铁矿床,氧化铌的远景储量达660万吨,占全国储量的95%。对富铌矿物的赋存状态开展研究,有助于查明铌的分布规律,提高铌矿床选冶效率。然而,白云鄂博矿床的铌矿物种类繁多,且具分布分散、粒度小、成分和共伴生关系复杂等特点,如何精准识别和定位这些矿物并进行分类,往往给科研人员带来困扰。该团队针对这一问题,在白云鄂博碳酸盐样品的基础上,建立了铌矿物快速识别、精准定位和定量分析方法。通过电子背散射图像灰度阈值校正、两次图像采集和两次能谱采集,极大地缩短了对铌矿物识别和定量分析的时间,15分钟即可实现118平方毫米区域内微米级铌矿物的快速识别和精准定位(图2),整个薄片尺度可在3小时内完成。基于自动标记区域的能谱定量分析数据,结合主成分分析(PCA)统计学方法,即可实现不同铌矿物的准确分类(图3)。该方法也可用于稀土矿床中稀土矿物、天体样品中微细定年矿物等在大尺寸范围内的快速识别、精准定位和分类。
 
  嫦娥五号月壤具有细小、珍贵、颗粒多、成分复杂等特点,平均粒径不足50微米。获取如此细小颗粒的全岩成分,是对微束分析技术的一次挑战。传统方法通常运用电子探针分析获取矿物平均成分,用面积法统计矿物含量,再结合矿物密度,计算出月壤的全岩成分。然而,月壤矿物(如橄榄石和辉石)普遍发育显著的成分环带,为矿物平均成分统计带来很大的不确定性。因此,传统方法不仅效率低,误差也大。
 
  针对这一问题,该团队建立了单颗粒月球样品全岩主量元素无损分析方法。他们首先使用 MAC国际标准矿物为能谱定标(图4),检测限为0.1 wt%,对于含量>1 wt%的元素, 分析精度优于2-5%。在此基础上,通过能谱定量mapping技术,直接准确获得矿物的平均成分,再结合矿物含量与密度,最终可确定单颗粒月壤的全岩成分。将新方法运用于月球陨石NWA4734号样品,在误差范围内与其他化学分析方法的推荐值一致(图5)。该新方法已成功应用于嫦娥五号月壤样品研究。由于该方法不受样品形状的限制,不仅可用于月球、小行星、火星等珍贵样品的全岩成分分析,还可以针对薄片尺度内任意形态微区开展局部全岩成分分析。
 
  扫描电镜技术在地球和行星科学领域分析仪器中具有不可替代的地位,随着搭载附件和软件的提升,其分析技术开发和应用将具有无限可能。将扫描电镜与大数据分析技术相结合,建立更为高清、高效、精确的图像和成分分析方法,是扫描电镜技术发展的重要方向。
 
  研究成果发表于国际学术期刊Microscopy Research and Technique, Atomic Spectroscopy,Journal of Analytical Atomic Spectrometry上。研究受中科院地质与地球物理研究所重点部署项目(IGGCAS-201901、IGGCAS-202101)、实验技术创新基金(E052510401)和中科院重点部署项目(ZDBSSSW-JSC007-15)联合资助。

全部评论

上一篇:科学岛团队提出一种新型目标检测技术的人工智能框架

下一篇:新疆理化所等在废水处理及可持续产氢方面的研究获得进展

相关新闻
热门视频
相关产品
写评论...