$item.Name

首页>分析检测>环境检测>水质在线监测系统

参考价:

  • 面议
膜进样质谱仪 智能水质在线监测系统

具体成交价以合同协议为准

2024-11-11上海
型号
上海三澎机电有限公司

免费会员 代理商

该企业相似产品
环境气象监测系统、水质监测系统、土壤理化性质监测
产品简介
美国自然基金委推荐测量湿地脱氮速率专用仪器反硝化速率和脱氮速率科研的强大工具高精度溶解气体测量仪器前言:氮气(N2)、氧气(O2)、二氧化碳(CO2)是湿地、河流、湖泊、海洋等水体中的重要溶解气体,是生态环境变化过程中的重要参数指标
详细信息
美国自然基金委推荐测量湿地脱氮速率专用仪器
反硝化速率和脱氮速率科研的强大工具
高精度溶解气体测量仪器
 
前言:
氮气(N2)、氧气(O2)、二氧化碳(CO2)是湿地、河流、湖泊、海洋等水体中的重要溶解气体,是生态环境变化过程中的重要参数指标。例如,溶解氧是衡量海气扩散过程、水团混合、大洋环流以及海水中生物化学过程的重要指标;水体中CO2对于研究碳循环和气候变化具有重要作用;而水体中溶解N2则对于研究水体反硝化速率、农业氮肥利用率、水体富营养化等相关问题具有至关重要的作用。目前,测量水体海洋中溶解气体的传统方法是先采集水样,然后在实验室内或者船上进行检测,但由于很多参数会随时空的变化而发生改变,从而得不到实时原位的准确数据。水体及沉积物反硝化速率的测定方法主要有乙炔抑制法、N2通量法、质量平衡法、化学计量法和同位素法,但这些方法大多存在人为扰动大、操作繁琐、误差大的不足,因而无法精确测定淹水环境下的反硝化速率。膜进样质谱仪(MIMS)则能够实时、原位、连续监测水体中的溶解气体(N2、O2、CO2),并且能够精确测定淹水环境下水体、沉积物的反硝化速率,已被国内外众多研究机构广泛应用,并被美国自然科学基金委推荐用来测定湿地脱氮速率。同时,膜进样质谱仪还能够应用于稳定同位素(15N 、18O、13C)的检测、光合呼吸、生物反应器等方面的研究。
 
主要特点:
  • 可实时、原位检测
  • 测量精度高、重复性好
  • 所需样品量少,仅5ml
  • 操作简便,样品分析快,仅90s
  • 不需要顶空平衡,可实现水气分离
  • 可将空气中高浓度背景气体分离开,避免了样品的污染
  • 专用软件(QuickData)高效评估收集的信号和数据

 

图1 QuickData软件

 

主要应用:

  • 环境(水体、沉积物)反硝化速率的研究
  • 原位测量水体(海洋/湖泊/河流/地表水/地下水)中O2、CH4、DMS、CO2和Ar浓度
  • 海洋总初级生产力的测定
  • 贫瘠水域的呼吸作用研究
  • 稳定同位素的测定(15N 、18O、13C)
 
图2   MIMS在反硝化中的应用,将原状沉积物和上覆水取回在室内进行培养,研究反硝化过程中N2的排放速率
 
图3   利用已知CH4浓度和测量出来的信号值进行拟合曲线,进而测量未知水体中CH4浓度
 
图4   MIMS可用于水生生态系统代谢和氧气动力学研究
 
图5   MIMS可与液相氧电极或叶绿素荧光仪联用测量光合和呼吸作用
 
 
MIMS典型应用:
 
表1   标样连续测定10h后信号偏移情况(李晓波等,2013)
 
表2   MIMS与IRMS在测量海洋总初级生产力时的数据比较
 
图7   利用MIMS测量出11种中国典型稻田土壤下的反硝化、厌氧氨氧化、DNRA的贡献率(Shan J et. al, 2016)
 
参考文献:
 
1.李晓波, 夏永秋, 郎漫, 等. N2:Ar法直接测定淹水环境反硝化产物N2的产生速率. 农业环境科学学报, 2013, 32(6): 1284-1288
2.赵永强, 夏永秋, 李博伦, 等. 利用膜进样质谱同时测定河流沉积物反硝化和厌氧氨氧化. 农业环境科学学报, 2014, 33(4): 794-802
3.Alexandra M F R, Matthew A C. Benthic nitrogen fixation in an eutrophic estuary affected by groundwater discharge. Journal of Coastal Research, 2012, 28(2): 477-485
4. Alexander J R, Jennifer L T, Timothy J H, et al. Sediment, water column, and open-channel denitrification in rivers measured using membrane-inlet mass spectrometry. Journal of Geophysical Research: Biogeosciences, 2015, 121: 1258 -1274
5.Fred J G, Dragoslav T M, John C L. Estimating rates of denitrification enzyme activity in wetland soils with direct simultaneous quantification of nitrogen and nitrous oxide by membrane inlet mass spectrometry. Microbial & Biochemical Technology, 2013, 5(4): 095-101
6. Gueguen C, Tortell P D. High-resolution measurement of Southern Ocean CO2 and O2/Ar by membrane inlet mass spectrometry[J]. Marine Chemistry, 2008, 108(3/4): 184-194
7. Jeffrey C C, Michael K, Todd M K. Denitrification in coastal ecosystems: methods, environmental controls, and ecosystem level controls, a review. Aquatic Ecology, 1999, 33: 41-54
8. Jun S, Xu Z, Rong S, et al. Dissimilatory nitrate reduction processes in typical Chinese paddy soils: rates, relative contributions, and influencing factors. Environmental Science & Technology, 2016, 50: 9972-9980
9. Kaiser J, Reuer M K, Barnett B, et al. Marine productivity estimates from continuous O2/Ar ratio measurements bymembrane inlet mass spectromtry[J]. Geophysical Reasearch Letters, 2005, 32(19), doi: 10. 1029/2005GL023459
10. Ketil K J, Anne E G. New approach for measuring denitrification in the rhizosphere of vegetated marsh sediments. Limnology and Oceanography: Methods, 2009, 7: 626-637
11. Lesley K S, Mary A V, John K B, et al. Denitrification in nitrate-rich streams: application of N2:Ar and 15N-tracer methods in intact cores. Eeological Applications, 2006, 16(6):  2191-2207
12. Mohammad L K, Karl G R. Denitrification enzyme activity and potential of subsoils under grazed grasslands assayed by membrane inlet mass spectrometer. Soils Biology & Biochemistry, 2011, (43):1787-1797
13. Peter M G, Mark A A, Bohlke J K, et al. Methods for measuring denitrification: diverse approaches to A difficult problem. Ecological Applications, 2006, 16(6): 2091-2122
14. Reisinger A J, Tank J L, Hoellein T J, et al. Sediment, water column, and open‐channel denitrification in rivers measured using membrane‐inlet mass spectrometry[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(5): 1258-1274
15. Sara F, Daniela A V, Karin M B, et al. Application of membrane inlet mass spectrometry to measure aquatic gross primary production by the 18O in vitro method. Limnology and Oceanography: Methods, 2016, 14: 610-622
16. Shan J, Zhao X, Sheng R, et al. Dissimilatory nitrate reduction processes in typical Chinese paddy soils: rates, relative contributions, and influencing factors. Environmental Sciences & Technology, 2016, 50: 9972-9980
17. Sooomo A, Wayne S G, Todd M K. Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometry analysis. Applied and Environmental Microbiology, Mar. 2001, p. 1171-1178
18. Todd M K, Christina D, Hunt D, et al. Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Analytical Chemistry, 1994, 66(23): 4166-4170
19. Todd K M, Cornwell J C, Zhong L. Determination of denitrification in the Chesapeake Bay from measurements of N2 accumulation in bottom water[J]. Estuaries and Coasts, 2006, 29(2): 222-231.
20. Todd M K, Matthew B S, Jeffrey C C, et al. Denitrification in estuarine sediments determined by membrane inlet mass spectrometry. Limnology and Oceanography, 1998, 43(2): 334-339
21. Tortell P D. Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry[J]. Limnology and Oceanography: Methods, 2005, 3(1): 24-37
22. Zhou W, Xia L L, Yan X Y. Vertical distribution of denitrification end-products in paddy soils. Science of the Total Environment, 2017, 576: 462-471
23. Li X B, Xia L L, Yan X Y. Application of membrane inlet mass spectrometry to directly quantify denitrificaion in flooded rice paddy soil. Biology and Fertility of Soils, 2014, 50(6): 1-10
24. Zhao Y Q, Xia Y Q, Ti C P, et al. Nirtrogen removal capacity of the river network in a high nitrogen loading region. Environmental Science and Technology, 2015, 49(3): 1427-1435
 
 
相关技术文章

同类产品推荐

企业未开通此功能
详询客服 : 0571-87858618
提示

仪表网采购电话