对冶金企业的生产、生活用水实行按表 计量考核管理,是节水节能工作中一个重要 环节。为了寻求较为简便易行的水流量计量 手段,水城钢铁厂'自1978年以来,进行了插入式均速管毕托管流量计的研制工作。 提出了插入式均速管毕托管流量计的结构设 计;试制了一批口径分别为150、200、250、 300、500mm的均速毕托管流量计,其中30 余套在本厂和一些兄弟单位安装试用。
经过三年多来的现场应用和贵州省计量 测试所对部分样机的测试表明运行情况良 好,计量性能达到研制设计要求,取得了初 步效果,并在1982年底鉴定,现在该流量计 已由水城钢铁厂电修厂投入试生产。
均速管毕托管流量计的主要技术指标及适用条件如 下:
1. 主要技术指标见表1。
2. 适用条件
工作压力:0.3—10kgf/cm2;
水 温:0—50迫;
7k 质:(差压式)适用 于清水及悬浮物少于500 mg//,'无大颗粒杂质的工 业水计量;(分 流式)只适用于清水计 量。
3. 安装要求
(1 )表前应有不小于10倍管径的直 管段,表后应有5倍管径的直管段。
(2)均速毕托管的附件短管4 (见 后图4)与输水管保持垂直:。
二、均速管毕托管流量计原理和构造
式中-C——阻力系数,牛顿区内C近似为 常数(图3);
V-——流体重度(kg/m3) 式(1)可写成V=J器•!/花 (2) 即水流速与柱体迎、背流面之间压强差平方 根成正比。
断面为桥墩形的柱体探头(即差压感受 元件)A位于输水管横截面中心线上(见图 1),探头的迎流面和背流面各有一排(9孔) 成对称分布的感压孔,分别与正负导压管连 通。由于输水管内水流体与静止柱体探头相
V・d 对运动,产生绕流。绕流雷诺数Red = %-, 其中P为水流体运动粘度,V为水流速。流 量计探头迎流面上诸感压孔承受流体全压。 因水流速在管道直径方向非均匀分布,故探 头各感压孔承受的全压值也不相等。这些数 值不等的全压值在正压联通管内自动平衡。 平衡后正压管内的全压值为P”以水柱高 Hi表示,则Fh=导;位于涡流低压区的背 流面感压孔承受流体低压,同样,在负压管 内自动平衡后的低压值为Pz,以水柱高Hz 表 7K , H 2
&——探头后驻点无因次压力,为负 值
a-a2用流速系数a表示,又因a?为负 值,须a = «1-a2 = a1 + | a2 \ 代入式(3)
式(4)与式(2)比较,物理含义相 同,a相当于式(2)中的阻力系数C,探 头的几何形状、工艺参数择定后,a为常 数。
在常温下,输水■体积流量
Q = 3600- co* V (m3/h) 式中q一_输水管横断面积
则 。=3600,兰?~・J夸h
令36。。•平
必——仪表流量常数
0 = ^ ■/ h
经实验证明,只要感压孔沿圆管直径向 紊流范围内按一定规律分布,正负导压管内 的水压强差h与管道内平均水流速可保持以 下函数关系:
=(% 一 口2)
(m)
(3)
图4流量计构造
1 .输水管,2.探头,3.分流水表;4,短管,
5.正压导管,6.负压导管,7.闸阀;8.闸阀,
9 .平衡阀;10.差压变送器;11开方器$ 12 ,电 子电位差计;13 .旋塞阀
式中 V-—输水管内平均水流速;
p
静压水头;
%——探头前驻点无因次压力;
42
图
4流量计构造
1 .输水管,
2.探头,
3.分流水表;
4,短管,
5.正压导管,
6.负压导管
,7.闸阀;
8.闸阀,
9 .平衡阀;
10.差压变送器;
11开方器$
12 ,电 子电位差计;
13 .旋塞阀
流量Q与均速毕托管测差压h平方根成 正比。输水管径一定,标定a值(或H值), 只要测出差压h、即可导出流量Q。
流量计构造如图4所示。探头2插在输 水管中,在其截面的径向位置。探头感受的 流量差压信号经导压管5( + )、6(一)引出, 推动分流水表或其他形式的二次仪表进行流 量显示和积算。
为便于维修和定期校验,流量计带有管 头0 (焊接固定在输水管上)、旋塞阀、外套 管、盘根座等动密封止水装置及螺杆压入紧 固装置,均速毕托管可在管道不停水的情况 下装入或拆卸。
按配用不同形式的二次仪表,流量计分 分为差压式和分流式两种类型:
1. JBL-I型差压式流量计 以均速 毕托管作为流量计一次传感元件,配以差压 变送器、电子开方器、电子电位差计,或配 差压变送器、开方积算器等DDZ系列电动单 元组合仪表,实现流量信号变送、转换、显 示、积算等目的(图5)。
图5差压式流量计示意图
2. 分流式流量计以高灵敏 度的YST5容积式水表或电子水表及Dgl5 旋翼式水表作为分流表,指示累计水量(参 见图4 )。将水表进出口接头拧在闸阀7上与 导压管5、6串联,在压差h推动下,水从探 头迎流面感压孔进入正压导管,通过分流表 及负压导管再由探头背流面感压孔流出,返 回主管道。
根据测试的分流管路阻力特性,在给定 的量程范围内,分流表通过的累计水量q与 相同时间内输水管通过的累计水量Q*成正 比,即
Qs-Kq K——倍率系数
通过流量检定装置标定了每台流量计的 倍率系数K,便可根据分流表秒表量q按上 式推算出相应考核期内输水管过水量Q" 这种分流式流量计的特点在于构造简 单,有一定的精度。但受分流管路阻力特性 和分流表自身下限流量的制约,要求输水管 内平均水速不小于0.8〜lm/s,为此分流 式流量计适合用于水泵扬水量或下限流速在 0.8-lm/s以上的清水输水管道累计水量测 试。I型和I型流量计的均速毕托管 部分结构相同。
感压孔在探头上的取孔位置、孔数、孔 径及探头截面形状的选择应考虑以下要求:
1. 在欲定的流量量程范围内,a为足 够准确的近似常数。
2. 获取较强的压差信号,以利提高测 试灵敏度。
• 3.兼顾分流式流量计的功能需要,感 压孔径大小适当,具有足够的进出水流通面 积。
' 经对几种不同形状的探头及布孔方案试 验比较,最后选择了图1、4所示方案,探头 迎、背向各开9个感压孔,在士0.75R范 围内均匀对称分布。按此方案加工制作的 Dgl50-500不同规格探头置于相应口径导 管中,放在大口径流量标准装置上,进行了 系数a值的实测标定,在流速0.355-3.265 m/s范围内,各流量点a值相对误差均在士 1.2%以内。表1为Dg300mm规格探头流速 系数a实测数据。
根据每台均速管标定的a值及使用要 求,可按下式确定配套差压变送器上程 差压值 hg(mmHzO)。
hg=6.376 x 106 .以言1-- (mmHzO)
43 式中:Qg——上限流量值(m3/h);
D 输水管内径(mm)
表2 Dg300mm探头流速系数a实测数据 序 号 | 平均流速 m/s | Red | On | 仪表流速系数 a | (Zn ^—(Z _ . °= a % |
1 | 0.355 | 9.8X104 | 1.660 | | + 1.2% |
2 | 0.648 | 17.9X104 | 1.660 | | + 1.2% , |
3 | 1.259 | 34.8X10、 | 1.630 | 1.640 | -0.61% |
4 | 1.870 | 51.8X104 | 1.630 | -0.61% |
5 | 2.490 | 68.9X104 | 1.646 | | + 0.36% |
6 | 3.146 | 87 x IO' | 1.643 | | + 0.18% |
三、实验数据及经济效益
为核定精度等级,委托贵州省计量测试 所将6套不同口径规格的均速毕托管差压式 流量计,在开封流量中心站的大口径流量标 准装置上进行了计量性能的测试。(标准装 置系统精度为士0.2%)。实测结果表明,被 检流量的基本误差限均小于量程上限的士 1.5%。表3列举了 Dg300口径流量计的部分 测试数据。
分流式流量计的精度系用标准表法测 试,(以精度±0.5%的涡轮流量计为标准 表)。表4列举了口径150mm分流式流量计测 试数据。
表3均速毕托管流量计测试记录
型号:规格:Dg300mm | | 流量标准值 | 流量计 | 艳对误差 | 上限流宜 | 精 度 |
序 | 号 | Qi S/h) | 指示流量 Qz (m3/h) | 2\Q = Q2—Qi (m3/h) | Qmax (m3/h) | AQmax »z 。一 c % M i max |
| 1 | 90.5 | 89 | -1.5 | | |
上 | 2 | 164.9 | 164.6 | -0.3 | | |
3 | 321.2 | 319.7 | -1.5 | | |
行 | 4 | 476.2 | 473.9 | -2.3 | | |
程 | 5 | 632.7 | 634.6 | + 1.9 | 800.80 | |
| 6 | 800.8 | 796.9 | -3.9 | | + 0.2% |
下 | 6 | 800.6 | 796.9 | -3.7 | | —0.5% |
5 | 648.3 | 646.7 | -1.6 | | |
行 | 4 | 475.8 | 473.9 | -1.9 | | |
程 | 3 | 324.5 | 323.3 | -1.2 | | |
2 | 164.1 | 164.6 | + 0.5 | | |
该流量计的特点及经济效益分析如下:
1.能直接、准确地反映出平均流速水 头参数。测量探头无活动部件,因而仪表具 有良好的复现性。采取多对感压孔迎背流向 对称布置,可获取相当于平均流速水头L6 倍以上的差压信号,有利于提高测试灵敏 度。
2. 阻力损失小。常用的测量水的孔板 差压流量计压力损失一般在70~120mmHg 范围内,均速毕托管的压力损失约为前者的 2%,可忽略不计。对于用水量大的冶金、化 工、电力等行业而言,可节约大量输水电 耗。
3, 采用插入式结构,均速毕托管直接 |
| 序 号 | 流 速 (m/s) | 流最标准值 6(m,/h) | 分流表流量 q(m3/h) | 倍率常数 K | 双检表指示 流量Q Q2 = kg | △Q △Q= Qz—Qi | 引用相对误差 士 △Qma* 0/ | Qbx-Q顷 | 1 | 1.14 | 72.69 | 0.203 | | 69.95 | -2.74 | | 2 | 1.73 | 109.84 | 0.311 | | 107.16 | —2*68 | | 3 | 2.67 | 144.33 | 0.415 | 344.58 | 143.00 | -1.33 | ±1.5% | 4 | 2.88 | 182.95 | 0.537 | | 185.04 | + 2.09 | | 5 | 3.94 | 250.53 | 0.735 | | 253.27 | + 2.74 | | |
插在输水管上,可在管道不停水情况下拆卸 或装入,便于维修及定期清洗、校验。.
4. 有较宽的量程比。一般^^板差压流 量计量程比为3 : 1〜4 : 1,均速毕托管差压 式流量计可达5 : 1~8 : lo
5. 结构简单,无须敷设旁通管道与阀 门组,建设投资与运行费用明显低于其他类 型的流量计。
6. 设计加工定型后,系数“、K值等 技术参数可按使用件进行计算,有利于实现
,标准化、系列化。
除上述特点外,均速毕托管作为水流量 计量器具也还存在一些问题有待进一步研究 解决,如扩大分流式流量计的测试量程比、 完善有关规程和标准等。