免费会员 其他
参考价:
具体成交价以合同协议为准
免费会员 其他
详细介绍
全自动脑立体定位仪是组合了经典的U型框设计定制马达和创新性软件是一款新型的脑定位仪产品。通过StereoDrive软件此型号全自动脑立体定位仪能够通过马达和电脑控制三个轴方向上的位移。另外软件中整合了Paxinos 和Watson的《大鼠脑定位图谱》、《小鼠脑定位图谱》能够更方便和更直观的进行脑立体定位。
全自动脑立体定位仪的主要特点
· 脑立体定位仪由软件驱动计算机控制
· 兼容标准脑立体定位仪
· 立体位置3轴定位
· 高精度移动精度0.001mm
操作方便、精准
· 脑立体定位仪对于小动物的脑部手术来说是一种可靠的多功能的设备。
· 通过仪器的精确定位可以确保电极、微管以及其它设备在实验过程中的精确定位。
模块(可选)
· 由微型电动机来准确地控制推进和停止hamilton注射器注射器可以方便地固定在脑立体定位仪上。
· 菜单操作简单可以通过平台选择注射器的型号设定注射容量、注射速度。
· 流速范围0.01 µl/min到200 µl/min
模块(可选)
· 集成式电动机和低震动的柔韧性轴噪音低性能可靠;
· 电动机集成化固定在支撑架上;
· 可选用手动或脚踏开关控制转速每分钟10000转。
前囟监测观察器(可选)
· 实时精确观察定位情况;
· 减少人为失误确保手术精度;
motorized rat stereotaxic instruments
The Motorized Rat Stereotaxics combines the classic stereotaxic design with customized motors and state-of-the-art software. Integrated with popular stereotaxic atlases the StereoDrive software allows motorized, computer controlled stereotaxic positioning in all 3 orthogonal axes. The intuitive movement control enables unprecedented accuracy and higher throughput in all stereotaxic applications.
The Motorized Lab Standard Stereotaxic combines the classic design of our time-proven ‘U’-Frame with customized motors and state-of-the-art software.
Designed to adapt conventional stereotaxic systems, the StereoDrive software allows motorized, computer controlled stereotaxic positioning in all 3 orthogonal axes. Integrated with Paxinos and Watson’s Rat Brain in Stereotaxic Coordinates, for either rat or mouse, the intuitive movement control enables unprecedented accuracy and higher throughput in all stereotaxic applications.
Features:
Digital Atlas integration
Frame representation
Calibration of frame coordinates
Setting of logical coordinate system (Bregma)
Coordinates and Atlas visualization of the probe
Advanced 3D visualization options
Spatial Atlas representation
Intuitive probe control
Intuitive navigation
Motorized UpgradeYour choice of two service options:
Option 1New Motorized Manipulator Arm and Axis StereoDrive Software
Keep your existing arm. We'll ship you a new one.
Option 2Conversion to Motorized Manipulator Arm and Axis StereoDrive Software
Send us your existing arm. We will convert it to motorized for you.
Motorized Lab Standard Stereotaxic Software SamplerThe StereoDrive software display is divided into the navigation section on the left and the 3D atlas view on the right side of the window.
1. Atlas View
2. Actual position of the probe (logical or physical)
3. Axial view thumbnail — indicating the movement in anterior-posterior (X-axis) or medio-lateral (Y Axis) direction
4. Coronal view thumbnail — indicating the movement in medio-lateral (Y-axis) or inferior-superior (Z Axis) direction
5. Anterior-posterior (X) drive control region
6. Medio-lateral (Y) drive control region
7. Inferior-superior (Z) drive control region
8. Actual coordinates of the probes tip
9. Editable target coordinates of the probes tip
10. Stop button
11. GoTo button
12. Set Lambda button — setup of the logical coordinate system
13. Set Bregma button — setup of the logical coordinate system
14. Tools — access to the microdrive calibration (frame coordinate system)
Motorized StereoDrive Software
Included with Motorized Lab Standard™ Stereotaxic
Axis StereoDrive Software integrates seamlessly with the precision controlled motors. Motor movement can be executed by using the keyboard arrow keys or clicking on the screen with the mouse.
The software coordinates motor movement of all 3 axes (anterior-posterior, medial-lateral, and dorsal-ventral) probe placement in relation to 3-dimensional visual representation of a rat (Paxinos & Watson, 6th Edition) or mouse (Watson, 3rd edition) Brain Atlas.
Features
Easy calibration
Software-driven control of stereotaxic movement
Virtual visualization of probe location
One micron resolution
Download coordinates to computer for recall and/or archiving
Angle adjustments
Variable speed on 2-axis (dorsal-ventral)
The Motorized Lab Standard Stereotaxic combines the classic design of our time-proven ”U”-Frame with customized motors and state-of-the-art software.Designed to adapt conventional stereotaxic systems, the StereoDrive software allows motorized, computer controlled stereotaxic positioning in all 3 orthogonal axes.
Integrated with Paxinos and Watson’s Rat Brain in Stereotaxic Coordinates, the intuitive movement control enables unprecedented accuracy and higher throughput in all stereotaxic applications
Image manipulations include:
Spatial Rotation
Fixed Rotation
Zooming
Panning
ITEM | DESCRIPTION |
小鼠型 | 配小鼠适配器18°耳杆 |
大鼠型 | 配大鼠适配器45°或18°耳杆 |
全自动脑立体定位仪部分参考文献
1. Albéri, L., Lintas, A., Kretz, R., Schwaller, B., & Villa, A. E. (2013). The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. Journal of neurophysiology, 109(11), 2827-2841.
2. Sonati, T., Reimann, R. R., Falsig, J., Baral, P. K., O’Connor, T., Hornemann, S., Aguzzi, A. (2013). The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature, 501(7465), 102-106.
3. Ali, I., O’Brien, P., Kumar, G., Zheng, T., Jones, N. C., Pinault, D., O’Brien, T. J. (2013). Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in RatsImplications for Limbic Epilepsy. PLOS ONE, 8(6), e66962.
4. Bell, L. A., Bell, K. A., & McQuiston, A. R. (2013). Synaptic Muscarinic Response Types in Hippocampal CA1 Interneurons Depend on Different Levels of Presynaptic Activity and Different Muscarinic Receptor Subtypes. Neuropharmacology.
5. Bolzoni, F., Bączyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
6. Bolzoni, F., Bączyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
7. Babaei, P., Tehrani, B. S., & Alizadeh, A. (2013). Effect of BDNF and adipose derived stem cells transplantation on cognitive deficit in Alzheimer model of rats. Journal of Behavioral and Brain Science, 3, 156-161.
8. Gilmartin, M. R., Miyawaki, H., Helmstetter, F. J., & Diba, K. (2013). Prefrontal Activity Links Nonoverlapping Events in Memory. The Journal of Neuroscience, 33(26), 10910-10914.
9. Feng, L., Sametsky, E. A., Gusev, A. G., & Uteshev, V. V. (2012). Responsiveness to nicotine of neurons of the caudal nucleus of the solitary tract correlates with the neuronal projection target. Journal of Neurophysiology, 108(7), 1884-1894.
10. Clarner, T., Diederichs, F., Berger, K., Denecke, B., Gan, L., Van der Valk, P., Kipp, M. (2012). Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia, 60(10), 1468-1480.
11. Girardet, C., Bonnet, M. S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Troadec, J. D. (2011). Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenolA PGE2-independent mechanism.Toxicological Sciences, 124(1), 179-191.
12. Hruška-Plocháň, M., Juhas, S., Juhasova, J., Galik, J., Miyanohara, A., Marsala, M., Motlik, J. (2010). A27 Expression of the human mutant huntingtin in minipig striatum induced formation of EM48+ inclusions in the neuronal nuclei, cytoplasm and processes. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
13. Brooks, S., Jones, L., & Dunnett, S. B. (2010). A29 Frontostriatal pathology in the (C57BL/6J) YAC128 mouse uncovered by the operant delayed alternation task. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A10.
14. Yu, L., Metzger, S., Clemens, L. E., Ehrismann, J., Ott, T., Gu, X., Nguyen, H. P. (2010). A28 Accumulation and aggregation of human mutant huntingtin and neuron atrophy in BAC-HD transgenic rat. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
15. Baxa, M., Juhas, S., Pavlok, A., Vodicka, P., Juhasova, J., Hruška-Plocháň, M., Motlik, J. (2010). A26 Transgenic miniature pig as an animal model for Huntington’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A8-A9.
3007536033